More notes
parent
a2cc860dc9
commit
f3de4b22d0
|
@ -37,6 +37,8 @@ To express membership, we use $\in$, as in $2 \in A$.
|
||||||
|
|
||||||
To express non-membership, we use $\notin$, as in $5,6 \notin A$.
|
To express non-membership, we use $\notin$, as in $5,6 \notin A$.
|
||||||
|
|
||||||
|
* * * *
|
||||||
|
|
||||||
**Special Sets**
|
**Special Sets**
|
||||||
|
|
||||||
$\Bbb{N}$
|
$\Bbb{N}$
|
||||||
|
@ -46,8 +48,8 @@ $\Bbb{Z}$
|
||||||
: *integers*, $\{\dots, -4, -3, -2, -1, 0, 1, 2, 3, 4,\dots\}$
|
: *integers*, $\{\dots, -4, -3, -2, -1, 0, 1, 2, 3, 4,\dots\}$
|
||||||
|
|
||||||
$\Bbb{Q}$
|
$\Bbb{Q}$
|
||||||
: *rational numbers*, $\Bbb{Q} = \{x : x = \frac mn, m,n \in \Bbb{Z}
|
: *rational numbers*, $\Bbb{Q} = \{x : x = \frac mn; m,n \in \Bbb{Z};
|
||||||
and n \neq 0\}$.
|
n \neq 0\}$.
|
||||||
|
|
||||||
$\Bbb{R}$
|
$\Bbb{R}$
|
||||||
: *real numbers*, the set of all real numbers on the number line.
|
: *real numbers*, the set of all real numbers on the number line.
|
||||||
|
@ -66,3 +68,46 @@ the set, which is the number of elements it has. E.g. $|A| = 4$.
|
||||||
$$
|
$$
|
||||||
This can be read as "E is the set of all things of form $2n$, such
|
This can be read as "E is the set of all things of form $2n$, such
|
||||||
that $n$ is an element of $\Bbb{Z}$."
|
that $n$ is an element of $\Bbb{Z}$."
|
||||||
|
|
||||||
|
*intervals*
|
||||||
|
: For two numbers $a,b \in \Bbb{R}$ with $a < b$, we can form various
|
||||||
|
intervals on the number line by listing them as a bracketed pair. A
|
||||||
|
parenthesis indicates that side of the interval is *open*, while a
|
||||||
|
square bracket indicates that side of the interval is *closed*. A
|
||||||
|
closed interval *includes* the element of the pair on the closed side,
|
||||||
|
while an open interval does not. Infinite intervals are denoted by
|
||||||
|
including $\inf$ as one member of the pair on the open side.
|
||||||
|
|
||||||
|
* * * *
|
||||||
|
|
||||||
|
**Exercises 1.1**
|
||||||
|
|
||||||
|
1. $\{4x-1 : x \in \Bbb{Z}\}$ is
|
||||||
|
$\{\dots, -21, -16, -11, -6, -1, 4, 9, 14, 19,\dots \}$
|
||||||
|
|
||||||
|
* * * *
|
||||||
|
|
||||||
|
With two sets $A$ and $B$, one can "multiply" them to form the set $A
|
||||||
|
\times B$ which is called the *Cartesian product*.
|
||||||
|
|
||||||
|
**Definition 1.1**
|
||||||
|
: An *ordered pair* is a list $(x,y)$ of two things $x$ and $y$,
|
||||||
|
enclosed in parentheses and separated by a comma. They are
|
||||||
|
distinguished by order; e.g. $(3,4) \neq (4,3)$.
|
||||||
|
|
||||||
|
**Definition 1.2**
|
||||||
|
: The *Cartesian product* of two sets $A$ and $B$ is another set, $A
|
||||||
|
\times B$, defined as $A \times B = \{(a,b):a \in A, b \in B\}$.
|
||||||
|
|
||||||
|
E.g. $\{0,1\} \times \{2,1\} = \{(0,2),(0,1),(1,2),(1,1)\}$
|
||||||
|
|
||||||
|
**Fact 1.1**
|
||||||
|
: If $A$ and $B$ are finite sets, then $|A \times B| = |A| \cdot |B|$.
|
||||||
|
|
||||||
|
The set $\Bbb{R} \times \Bbb{R}$ can represent the points on the
|
||||||
|
Cartesian plane.
|
||||||
|
|
||||||
|
The idea extends to a 3-list, or *ordered triple*. In general:
|
||||||
|
$$ A_1 \times A_2 \times \dots \times A_n = \{
|
||||||
|
(x_1,x_2,\dots,x_n) : x_i \in A_i, i \in \Bbb{N} \}
|
||||||
|
$$
|
||||||
|
|
Loading…
Reference in New Issue