More notes
parent
7fc4349d7f
commit
a2cc860dc9
|
@ -34,3 +34,35 @@ E.g. $\{2,4,5,8\} = \{4,2,8,6\}$ but $\{2,4,6,8\} \neq \{2,4,6,7\}$.
|
|||
Uppercase letters often denote sets, e.g. $A = \{1,2,3,4\}$.
|
||||
|
||||
To express membership, we use $\in$, as in $2 \in A$.
|
||||
|
||||
To express non-membership, we use $\notin$, as in $5,6 \notin A$.
|
||||
|
||||
**Special Sets**
|
||||
|
||||
$\Bbb{N}$
|
||||
: *natural numbers*, the positive whole numbers $\{1,2,3,4,5,\dots\}$
|
||||
|
||||
$\Bbb{Z}$
|
||||
: *integers*, $\{\dots, -4, -3, -2, -1, 0, 1, 2, 3, 4,\dots\}$
|
||||
|
||||
$\Bbb{Q}$
|
||||
: *rational numbers*, $\Bbb{Q} = \{x : x = \frac mn, m,n \in \Bbb{Z}
|
||||
and n \neq 0\}$.
|
||||
|
||||
$\Bbb{R}$
|
||||
: *real numbers*, the set of all real numbers on the number line.
|
||||
|
||||
$\emptyset$
|
||||
: *empty set*, the unique set with no members, $\{\}$
|
||||
|
||||
* * * *
|
||||
|
||||
For finite sets $X$, $|X|$ represents the *cardinality* or *size* of
|
||||
the set, which is the number of elements it has. E.g. $|A| = 4$.
|
||||
|
||||
*set-builder notation* describes sets that are too big or complex to
|
||||
be listed out. E.g. the infinite set of even integers: $$
|
||||
E = \{2n : n \in \Bbb{Z}\}
|
||||
$$
|
||||
This can be read as "E is the set of all things of form $2n$, such
|
||||
that $n$ is an element of $\Bbb{Z}$."
|
||||
|
|
Loading…
Reference in New Issue