More notes
This commit is contained in:
		@@ -37,6 +37,8 @@ To express membership, we use $\in$, as in $2 \in A$.
 | 
				
			|||||||
 | 
					
 | 
				
			||||||
To express non-membership, we use $\notin$, as in $5,6 \notin A$.
 | 
					To express non-membership, we use $\notin$, as in $5,6 \notin A$.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					* * * *
 | 
				
			||||||
 | 
					
 | 
				
			||||||
**Special Sets**
 | 
					**Special Sets**
 | 
				
			||||||
 | 
					
 | 
				
			||||||
$\Bbb{N}$
 | 
					$\Bbb{N}$
 | 
				
			||||||
@@ -46,8 +48,8 @@ $\Bbb{Z}$
 | 
				
			|||||||
: *integers*, $\{\dots, -4, -3, -2, -1, 0, 1, 2, 3, 4,\dots\}$
 | 
					: *integers*, $\{\dots, -4, -3, -2, -1, 0, 1, 2, 3, 4,\dots\}$
 | 
				
			||||||
 | 
					
 | 
				
			||||||
$\Bbb{Q}$
 | 
					$\Bbb{Q}$
 | 
				
			||||||
: *rational numbers*, $\Bbb{Q} = \{x : x = \frac mn, m,n \in \Bbb{Z}
 | 
					: *rational numbers*, $\Bbb{Q} = \{x : x = \frac mn; m,n \in \Bbb{Z};
 | 
				
			||||||
and n \neq 0\}$.
 | 
					n \neq 0\}$.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
$\Bbb{R}$
 | 
					$\Bbb{R}$
 | 
				
			||||||
: *real numbers*, the set of all real numbers on the number line.
 | 
					: *real numbers*, the set of all real numbers on the number line.
 | 
				
			||||||
@@ -66,3 +68,46 @@ the set, which is the number of elements it has. E.g. $|A| = 4$.
 | 
				
			|||||||
 $$
 | 
					 $$
 | 
				
			||||||
This can be read as "E is the set of all things of form $2n$, such
 | 
					This can be read as "E is the set of all things of form $2n$, such
 | 
				
			||||||
 that $n$ is an element of $\Bbb{Z}$."
 | 
					 that $n$ is an element of $\Bbb{Z}$."
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					*intervals*
 | 
				
			||||||
 | 
					: For two numbers $a,b \in \Bbb{R}$ with $a < b$, we can form various
 | 
				
			||||||
 | 
					intervals on the number line by listing them as a bracketed pair. A
 | 
				
			||||||
 | 
					parenthesis indicates that side of the interval is *open*, while a
 | 
				
			||||||
 | 
					square bracket indicates that side of the interval is *closed*. A
 | 
				
			||||||
 | 
					closed interval *includes* the element of the pair on the closed side,
 | 
				
			||||||
 | 
					while an open interval does not. Infinite intervals are denoted by
 | 
				
			||||||
 | 
					including $\inf$ as one member of the pair on the open side.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					* * * *
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					**Exercises 1.1**
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					1. $\{4x-1 : x \in \Bbb{Z}\}$ is
 | 
				
			||||||
 | 
					   $\{\dots, -21, -16, -11, -6, -1, 4, 9, 14, 19,\dots \}$
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					* * * *
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					With two sets $A$ and $B$, one can "multiply" them to form the set $A
 | 
				
			||||||
 | 
					\times B$ which is called the *Cartesian product*.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					**Definition 1.1**
 | 
				
			||||||
 | 
					: An *ordered pair* is a list $(x,y)$ of two things $x$ and $y$,
 | 
				
			||||||
 | 
					enclosed in parentheses and separated by a comma. They are
 | 
				
			||||||
 | 
					distinguished by order; e.g. $(3,4) \neq (4,3)$.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					**Definition 1.2**
 | 
				
			||||||
 | 
					: The *Cartesian product* of two sets $A$ and $B$ is another set, $A
 | 
				
			||||||
 | 
					\times B$, defined as $A \times B = \{(a,b):a \in A, b \in B\}$.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					E.g. $\{0,1\} \times \{2,1\} = \{(0,2),(0,1),(1,2),(1,1)\}$
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					**Fact 1.1**
 | 
				
			||||||
 | 
					: If $A$ and $B$ are finite sets, then $|A \times B| = |A| \cdot |B|$.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					The set $\Bbb{R} \times \Bbb{R}$ can represent the points on the
 | 
				
			||||||
 | 
					Cartesian plane.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					The idea extends to a 3-list, or *ordered triple*. In general:
 | 
				
			||||||
 | 
					$$ A_1 \times A_2 \times \dots \times A_n = \{
 | 
				
			||||||
 | 
					 (x_1,x_2,\dots,x_n) : x_i \in A_i, i \in \Bbb{N} \}
 | 
				
			||||||
 | 
					$$
 | 
				
			||||||
 
 | 
				
			|||||||
		Reference in New Issue
	
	Block a user