More notes
This commit is contained in:
		@@ -34,3 +34,35 @@ E.g. $\{2,4,5,8\} = \{4,2,8,6\}$ but $\{2,4,6,8\} \neq \{2,4,6,7\}$.
 | 
				
			|||||||
Uppercase letters often denote sets, e.g. $A = \{1,2,3,4\}$.
 | 
					Uppercase letters often denote sets, e.g. $A = \{1,2,3,4\}$.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
To express membership, we use $\in$, as in $2 \in A$.
 | 
					To express membership, we use $\in$, as in $2 \in A$.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					To express non-membership, we use $\notin$, as in $5,6 \notin A$.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					**Special Sets**
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					$\Bbb{N}$
 | 
				
			||||||
 | 
					: *natural numbers*, the positive whole numbers $\{1,2,3,4,5,\dots\}$
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					$\Bbb{Z}$
 | 
				
			||||||
 | 
					: *integers*, $\{\dots, -4, -3, -2, -1, 0, 1, 2, 3, 4,\dots\}$
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					$\Bbb{Q}$
 | 
				
			||||||
 | 
					: *rational numbers*, $\Bbb{Q} = \{x : x = \frac mn, m,n \in \Bbb{Z}
 | 
				
			||||||
 | 
					and n \neq 0\}$.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					$\Bbb{R}$
 | 
				
			||||||
 | 
					: *real numbers*, the set of all real numbers on the number line.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					$\emptyset$
 | 
				
			||||||
 | 
					: *empty set*, the unique set with no members, $\{\}$
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					* * * *
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					For finite sets $X$, $|X|$ represents the *cardinality* or *size* of
 | 
				
			||||||
 | 
					the set, which is the number of elements it has. E.g. $|A| = 4$.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					*set-builder notation* describes sets that are too big or complex to
 | 
				
			||||||
 | 
					 be listed out. E.g. the infinite set of even integers: $$
 | 
				
			||||||
 | 
					 E = \{2n : n \in \Bbb{Z}\}
 | 
				
			||||||
 | 
					 $$
 | 
				
			||||||
 | 
					This can be read as "E is the set of all things of form $2n$, such
 | 
				
			||||||
 | 
					 that $n$ is an element of $\Bbb{Z}$."
 | 
				
			||||||
 
 | 
				
			|||||||
		Reference in New Issue
	
	Block a user