More notes

master
Levi Pearson 2014-01-25 16:00:39 -07:00
parent c43805b6fb
commit 8063dd20d5
1 changed files with 20 additions and 1 deletions

View File

@ -236,8 +236,27 @@ $$\begin{align}
\bigcap_{i=1}^{n} A_i &= A_1 \cap A_2 \cap \dots \cap A_n\\ \bigcap_{i=1}^{n} A_i &= A_1 \cap A_2 \cap \dots \cap A_n\\
\end{align}$$ \end{align}$$
For example, take the following infinite list of sets:
$$
A_1 = \{-1,0,1\}, A_2 = \{-2,0,2\}, \dots, A_i = \{-i,0,i\}, \dots
$$
We can see that:
$$ $$
A_1 = \{-1,0,1\}, A_2 = \{-2,0,2\}, \dots, A_i = \{-i,0,i\}, \dots\\
\bigcup_{i=1}^{\inf} A_i = \Bbb{Z} \text{ and } \bigcup_{i=1}^{\inf} A_i = \Bbb{Z} \text{ and }
\bigcap_{i=1}^{\inf} A_i = \{0\}\\ \bigcap_{i=1}^{\inf} A_i = \{0\}\\
$$ $$
**Definition 1.8**
If we have a set $A_{\alpha}$ for every $\alpha$ in some index set $I$,
then
$$\begin{align}
\bigcup_{\alpha \in I} A_{\alpha} &= \{ x : x \in A_{\alpha} \text {
for at least one set $A_{\alpha}$ with } \alpha \in I \}\\
\bigcap_{\alpha \in I} A_{\alpha} &= \{ x : x \in A_{\alpha} \text {
for every set $A_{\alpha}$ with } \alpha \in I \}\\
\end{align}$$