More notes
parent
c43805b6fb
commit
8063dd20d5
|
@ -236,8 +236,27 @@ $$\begin{align}
|
|||
\bigcap_{i=1}^{n} A_i &= A_1 \cap A_2 \cap \dots \cap A_n\\
|
||||
\end{align}$$
|
||||
|
||||
For example, take the following infinite list of sets:
|
||||
|
||||
$$
|
||||
A_1 = \{-1,0,1\}, A_2 = \{-2,0,2\}, \dots, A_i = \{-i,0,i\}, \dots
|
||||
$$
|
||||
|
||||
We can see that:
|
||||
|
||||
$$
|
||||
A_1 = \{-1,0,1\}, A_2 = \{-2,0,2\}, \dots, A_i = \{-i,0,i\}, \dots\\
|
||||
\bigcup_{i=1}^{\inf} A_i = \Bbb{Z} \text{ and }
|
||||
\bigcap_{i=1}^{\inf} A_i = \{0\}\\
|
||||
$$
|
||||
|
||||
**Definition 1.8**
|
||||
|
||||
If we have a set $A_{\alpha}$ for every $\alpha$ in some index set $I$,
|
||||
then
|
||||
|
||||
$$\begin{align}
|
||||
\bigcup_{\alpha \in I} A_{\alpha} &= \{ x : x \in A_{\alpha} \text {
|
||||
for at least one set $A_{\alpha}$ with } \alpha \in I \}\\
|
||||
\bigcap_{\alpha \in I} A_{\alpha} &= \{ x : x \in A_{\alpha} \text {
|
||||
for every set $A_{\alpha}$ with } \alpha \in I \}\\
|
||||
\end{align}$$
|
||||
|
|
Loading…
Reference in New Issue