More notes
This commit is contained in:
		@@ -236,8 +236,27 @@ $$\begin{align}
 | 
			
		||||
\bigcap_{i=1}^{n} A_i &= A_1 \cap A_2 \cap \dots \cap A_n\\
 | 
			
		||||
\end{align}$$
 | 
			
		||||
 | 
			
		||||
For example, take the following infinite list of sets:
 | 
			
		||||
 | 
			
		||||
$$
 | 
			
		||||
A_1 = \{-1,0,1\}, A_2 = \{-2,0,2\}, \dots, A_i = \{-i,0,i\}, \dots
 | 
			
		||||
$$
 | 
			
		||||
 | 
			
		||||
We can see that:
 | 
			
		||||
 | 
			
		||||
$$
 | 
			
		||||
A_1 = \{-1,0,1\}, A_2 = \{-2,0,2\}, \dots, A_i = \{-i,0,i\}, \dots\\
 | 
			
		||||
\bigcup_{i=1}^{\inf} A_i = \Bbb{Z} \text{ and }
 | 
			
		||||
\bigcap_{i=1}^{\inf} A_i = \{0\}\\
 | 
			
		||||
$$
 | 
			
		||||
 | 
			
		||||
**Definition 1.8**
 | 
			
		||||
 | 
			
		||||
If we have a set $A_{\alpha}$ for every $\alpha$ in some index set $I$,
 | 
			
		||||
then
 | 
			
		||||
 | 
			
		||||
$$\begin{align}
 | 
			
		||||
\bigcup_{\alpha \in I} A_{\alpha} &= \{ x : x \in A_{\alpha} \text {
 | 
			
		||||
for at least one set $A_{\alpha}$ with } \alpha \in I \}\\
 | 
			
		||||
\bigcap_{\alpha \in I} A_{\alpha} &= \{ x : x \in A_{\alpha} \text {
 | 
			
		||||
for every set $A_{\alpha}$ with } \alpha \in I \}\\
 | 
			
		||||
\end{align}$$
 | 
			
		||||
 
 | 
			
		||||
		Reference in New Issue
	
	Block a user