Fixing...

master
Levi Pearson 2014-01-25 15:42:14 -07:00
parent 8f393e0188
commit 47a7cc7898
1 changed files with 6 additions and 8 deletions

View File

@ -218,15 +218,13 @@ $$ so $\overline P$ is the set of composite numbers and 1.
$A_1, A_2,\dots, A_n$ are sets. $A_1, A_2,\dots, A_n$ are sets.
$$ $$\begin{align}
\begin{align}
A_1 \cup A_2 \cup A_3 \cup \dots \cup A_n &= A_1 \cup A_2 \cup A_3 \cup \dots \cup A_n &=
\left{x : x \in A_i \left\{x : x \in A_i
\text{ for at least one set $A_i$, for } \text{ for at least one set $A_i$, for }
1 \leq i \leq n\right}\\ 1 \leq i \leq n\right\}\\
A_1 \cap A_2 \cap A_3 \cap \dots \cap A-n &= A_1 \cap A_2 \cap A_3 \cap \dots \cap A-n &=
\left{x : x \in A_i \left\{x : x \in A_i
\text{ for every set $A_i$, for } \text{ for every set $A_i$, for }
1 \leq i \leq n \right}\\ 1 \leq i \leq n \right\}\\
\end{align} \end{align}$$
$$