Fixing...
parent
8f393e0188
commit
47a7cc7898
|
@ -218,15 +218,13 @@ $$ so $\overline P$ is the set of composite numbers and 1.
|
||||||
|
|
||||||
$A_1, A_2,\dots, A_n$ are sets.
|
$A_1, A_2,\dots, A_n$ are sets.
|
||||||
|
|
||||||
$$
|
$$\begin{align}
|
||||||
\begin{align}
|
|
||||||
A_1 \cup A_2 \cup A_3 \cup \dots \cup A_n &=
|
A_1 \cup A_2 \cup A_3 \cup \dots \cup A_n &=
|
||||||
\left{x : x \in A_i
|
\left\{x : x \in A_i
|
||||||
\text{ for at least one set $A_i$, for }
|
\text{ for at least one set $A_i$, for }
|
||||||
1 \leq i \leq n\right}\\
|
1 \leq i \leq n\right\}\\
|
||||||
A_1 \cap A_2 \cap A_3 \cap \dots \cap A-n &=
|
A_1 \cap A_2 \cap A_3 \cap \dots \cap A-n &=
|
||||||
\left{x : x \in A_i
|
\left\{x : x \in A_i
|
||||||
\text{ for every set $A_i$, for }
|
\text{ for every set $A_i$, for }
|
||||||
1 \leq i \leq n \right}\\
|
1 \leq i \leq n \right\}\\
|
||||||
\end{align}
|
\end{align}$$
|
||||||
$$
|
|
||||||
|
|
Loading…
Reference in New Issue