--- title: Scratch Page toc: no format: markdown ... # Math Stuff On observation of $\mathcal{D}$, the *likelihood* of hypothesis $\mathcal{R}_{\alpha}$ is $\mathit{P}(\mathcal{D}|\mathcal{R}_{\alpha})$. ## Fingerprint Variance Additionally, we associate a collective **RSS Variance** $\sigma_{F_s}$ with each fingerprint, which is a weighed average of the RSS values of each of the vector elements using $C_i$ as the weight. It is calculated in this manner: $$ \sigma_{F_s} = \frac{\sum_{i \in F_s} \sigma_i\, C_i} {\sum_{i \in F_s} C_i} $$ # Bayesian Regression First, specify a set of probabilistic models of the data. Let a member of this set be denoted by $\mathcal{R}_\alpha$ $\mathcal{R}_\alpha$ has a *prior* probability $P(\mathcal{H}_\alpha)$ On observation of $\mathcal{D}$, the *likelihood* of hypothesis $\mathcal{R}_{\alpha}$ is $\mathit{P}(\mathcal{D}|\mathcal{R}_{\alpha})$. The *posterior* probability of $\mathcal{R}_{\alpha}$ is then given by $\mathit{P}(\mathcal{H}_{\alpha})\mathit{P}(\mathcal{D}|\mathcal{H}_{\alpha})$ This follows from **Bayes' Theorem** which says $$ P(A|B) = \frac{P(B | A)\, P(A)}{P(B)} $$ # Matrix Stuff This is a column vector: $$\vec v = \left(\begin{matrix} 1\\ 3\\ 7 \end{matrix}\right)$$ The *vector sum* of $\vec u$ and $\vec v$ is: $$\vec u + \vec v = \left(\begin{matrix} u_1\\ \vdots\\ u_n \end{matrix}\right) + \left(\begin{matrix} v_1\\ \vdots\\ v_n \end{matrix}\right) = \left(\begin{matrix} u_1 + v_1\\ \vdots\\ u_n + v_n \end{matrix}\right) $$ The *scalar multiplication* of the real number $r$ and the vector $\vec v$ is: $$ r \cdot \vec v = r \cdot \left(\begin{matrix} v_1\\ \vdots \\ v_n \end{matrix}\right) = \left(\begin{matrix} rv_1 \\ \vdots \\ rv_n \end{matrix}\right) $$ This system: $$\begin{alignedat}{4} x & {}-{} & y & {}+{} & z & = 1\\ 3x & {}+{} & & & z & = 3\\ 5x & {}-{} & 2y & {}+{} & 3z & = 5 \end{alignedat}$$ reduces $$ \left(\begin{array}{rrr|r} 1&-1&1&1\\ 3&0&1&3\\ 5&-2&3&5\\ \end{array}\right) \longrightarrow_{-5\rho_1+\rho_3}^{-3\rho_1+\rho_2} \left(\begin{array}{rrr|r} 1&-1&1&1\\ 0&3&-2&0\\ 0&3&-2&0\\ \end{array}\right) \longrightarrow^{-\rho_2+\rho_3} \left(\begin{array}{rrr|r} 1&-1&1&1\\ 0&3&-2&0\\ 0&0&0&0\\ \end{array}\right) $$ to a one parameter solution set: $$ \{ \begin{pmatrix}1\\ 0\\ 0\end{pmatrix} + \begin{pmatrix}-1/3\\ 2/3\\ 1\end{pmatrix} z \mid z \in \Bbb{R} \} $$