Fixes
parent
2dddf218c7
commit
c43805b6fb
|
@ -232,12 +232,12 @@ A_1 \cap A_2 \cap A_3 \cap \dots \cap A_n &=
|
||||||
Given $A_1, A_2, \dots, A_n$ we define
|
Given $A_1, A_2, \dots, A_n$ we define
|
||||||
|
|
||||||
$$\begin{align}
|
$$\begin{align}
|
||||||
\bigcup{i=1}{n} A_i &= A_1 \cup A_2 \cup \dots \cup A_n\\
|
\bigcup_{i=1}^{n} A_i &= A_1 \cup A_2 \cup \dots \cup A_n\\
|
||||||
\bigcap{i=1}{n} A_i &= A_1 \cap A_2 \cap \dots \cap A_n\\
|
\bigcap_{i=1}^{n} A_i &= A_1 \cap A_2 \cap \dots \cap A_n\\
|
||||||
\end{align}$$
|
\end{align}$$
|
||||||
|
|
||||||
$$
|
$$
|
||||||
A_1 = \{-1,0,1}, A_2 = \{-2,0,2}, \dots, A_i = \{-i,0,i}, \dots\\
|
A_1 = \{-1,0,1\}, A_2 = \{-2,0,2\}, \dots, A_i = \{-i,0,i\}, \dots\\
|
||||||
\bigcup{i=1}{\inf} A_i = \Bbb{Z} \text{ and }
|
\bigcup_{i=1}^{\inf} A_i = \Bbb{Z} \text{ and }
|
||||||
\bigcap{i=1}{\inf} A_i = \{0\}\\
|
\bigcap_{i=1}^{\inf} A_i = \{0\}\\
|
||||||
$$
|
$$
|
||||||
|
|
Loading…
Reference in New Issue