More notes
This commit is contained in:
		| @@ -111,3 +111,98 @@ The idea extends to a 3-list, or *ordered triple*. In general: | ||||
| $$ A_1 \times A_2 \times \dots \times A_n = \{ | ||||
|  (x_1,x_2,\dots,x_n) : x_i \in A_i, i \in \Bbb{N} \} | ||||
| $$ | ||||
|  | ||||
| We can also take *Cartesian powers* of sets. For a set $A$ and | ||||
| positive integer $n$, $A^n$ is the Cartesian product of $A$ with | ||||
| itself $n$ times: $$ | ||||
| A^n = A \times A \times \dots \times A = \{(x_1,x_2,\dots,x_n):x_i \in | ||||
| A,i \in \{1,\dots,n\}\} $$ | ||||
|  | ||||
| * * * * | ||||
|  | ||||
| **Exercises 1.2** | ||||
|  | ||||
| 1. $A = \{1,2,3,4\}, B = \{a,c\}$ | ||||
|     a. $A \times B = | ||||
|     \{(1,a),(2,a),(3,a),(4,a),(1,c),(2,c),(3,c),(4,c)\}$ | ||||
|     b. $B \times A = | ||||
|     \{(a,1),(c,1),(a,2),(c,2),(a,3),(c,3),(a,4),(c,4)\}$ | ||||
|     d. $B \times B = \{(a,a),(a,c),(c,a),(c,c)\}$ | ||||
|     e. $\emptyset \times B = \emptyset$ | ||||
|     f. $(A \times B) \times B = \{((1,a),a),((2,a),a), | ||||
|        ((3,a),a),((4,a),a),((1,c),a),((2,c),a),((3,c),a), | ||||
|        ((4,c),a),((1,a),a),((2,a),c),((3,a),c),((4,a),c), | ||||
|        ((1,c),c),((2,c),c),((3,c),c),((4,c),c)\}$ | ||||
|  | ||||
| * * * * | ||||
|  | ||||
| **Definition 1.3** | ||||
| : $A$ and $B$ are sets. If every element of $A$ is also an element of | ||||
| $B$, then $A$ is a *subset* of $B$ and we write $A \subseteq B$. If | ||||
| this is not the case, we write $A \subsetneq B$, which means there is | ||||
| at least one element of $A$ that is not in $B$. | ||||
|  | ||||
| **Fact 1.2** | ||||
| : It follows from **1.3** that for any set $B$, $\emptyset \subseteq | ||||
| B$. I.e., the empty set is a subset of every set. | ||||
|  | ||||
| **Fact 1.3** | ||||
| : If a finite set has $n$ elements, it has $2^n$ subsets. | ||||
|  | ||||
| This can be shown by drawing a decision tree starting with the empty | ||||
| set, with each fork representing a choice of whether to insert the | ||||
| next element of the set in question. Since there are two possibilities | ||||
| at each fork and $n$ elements to consider for insertion, that gives | ||||
| $2^n$ total leaves of the tree. | ||||
|  | ||||
| * * * * | ||||
|  | ||||
| **Exercises 1.3** | ||||
|  | ||||
| 1. Subsets of \{1,2,3,4\}: $\emptyset, \{1\}, \{2\}, \{3\}, \{4\}, | ||||
|    \{1,2\}, \{1,3\}, \{1,4\}, \{2,3\}, \{2,4\}, \{3,4\}, \{1,2,3\}, | ||||
|    \{1,2,4\}, \{1,3,4\}, \{2,3,4\}, \{1,2,3,4\} | ||||
|  | ||||
| * * * * | ||||
|  | ||||
| **Definition 1.4** | ||||
| : $A$ is a set. The *power set* of $A$ is another set, | ||||
| $\mathscr{P}(A)$, defined to be the set of all subsets of | ||||
| $A$. I.e. $\mathscr{P}(A) = \{X:X\subseteq A\}$. | ||||
|  | ||||
| **Fact 1.4** | ||||
| : If $A$ is a finite set, $|\mathscr{P}(A)| = 2^{|A|}$. | ||||
|  | ||||
| * * * * | ||||
|  | ||||
| **Definition 1.5** | ||||
| $A$ and $B$ are sets. | ||||
| - The *union* of $A$ and $B$ is the set $A\cup B = \{x : x \in A or x | ||||
|   \in B\}$ | ||||
| - The *intersection* of $A$ and $B$ is the set $A\cap B = \{x : x \in | ||||
|   A and x \in B\}$ | ||||
| - The *difference* of $A$ and $B$ is the set $A - B = \{x : x \in A | ||||
|   and x \notin B\}$ | ||||
|  | ||||
| The operations $\cup$ and $\cap$ obey the commutative law for sets, | ||||
| but $-$ does not. | ||||
|  | ||||
| * * * * | ||||
|  | ||||
| We usually discuss sets in some context. Our sets in that context will | ||||
| naturally be subsets of some other set, which we call the *universal | ||||
| set* or just *universe*. If we don't know specifically which set it | ||||
| is, we call it $U$. | ||||
|  | ||||
| For example, when discussing the set of prime numbers $P$, the | ||||
| *universal set* is $\Bbb{N}$. When we discuss geometric figures such | ||||
| as the set of points in a circle $C$, the universe would be | ||||
| $\Bbb{R}^2$. | ||||
|  | ||||
| **Definition 1.6** | ||||
| : $A$ is a set in the universe $U$. The *complement* of $A$ or $A\bar$ | ||||
| is the set $A\bar = U - A$. | ||||
|  | ||||
| E.g. if $P$ is the set of prime numbers, then $$ | ||||
| P\bar = \Bbb{N} - P = \{1,4,6,8,9,10,12,\dots\} | ||||
| $$ so $P\bar$ is the set of composite numbers and 1. | ||||
|   | ||||
		Reference in New Issue
	
	Block a user