More notes
parent
f3de4b22d0
commit
a683e64fb9
|
@ -111,3 +111,98 @@ The idea extends to a 3-list, or *ordered triple*. In general:
|
|||
$$ A_1 \times A_2 \times \dots \times A_n = \{
|
||||
(x_1,x_2,\dots,x_n) : x_i \in A_i, i \in \Bbb{N} \}
|
||||
$$
|
||||
|
||||
We can also take *Cartesian powers* of sets. For a set $A$ and
|
||||
positive integer $n$, $A^n$ is the Cartesian product of $A$ with
|
||||
itself $n$ times: $$
|
||||
A^n = A \times A \times \dots \times A = \{(x_1,x_2,\dots,x_n):x_i \in
|
||||
A,i \in \{1,\dots,n\}\} $$
|
||||
|
||||
* * * *
|
||||
|
||||
**Exercises 1.2**
|
||||
|
||||
1. $A = \{1,2,3,4\}, B = \{a,c\}$
|
||||
a. $A \times B =
|
||||
\{(1,a),(2,a),(3,a),(4,a),(1,c),(2,c),(3,c),(4,c)\}$
|
||||
b. $B \times A =
|
||||
\{(a,1),(c,1),(a,2),(c,2),(a,3),(c,3),(a,4),(c,4)\}$
|
||||
d. $B \times B = \{(a,a),(a,c),(c,a),(c,c)\}$
|
||||
e. $\emptyset \times B = \emptyset$
|
||||
f. $(A \times B) \times B = \{((1,a),a),((2,a),a),
|
||||
((3,a),a),((4,a),a),((1,c),a),((2,c),a),((3,c),a),
|
||||
((4,c),a),((1,a),a),((2,a),c),((3,a),c),((4,a),c),
|
||||
((1,c),c),((2,c),c),((3,c),c),((4,c),c)\}$
|
||||
|
||||
* * * *
|
||||
|
||||
**Definition 1.3**
|
||||
: $A$ and $B$ are sets. If every element of $A$ is also an element of
|
||||
$B$, then $A$ is a *subset* of $B$ and we write $A \subseteq B$. If
|
||||
this is not the case, we write $A \subsetneq B$, which means there is
|
||||
at least one element of $A$ that is not in $B$.
|
||||
|
||||
**Fact 1.2**
|
||||
: It follows from **1.3** that for any set $B$, $\emptyset \subseteq
|
||||
B$. I.e., the empty set is a subset of every set.
|
||||
|
||||
**Fact 1.3**
|
||||
: If a finite set has $n$ elements, it has $2^n$ subsets.
|
||||
|
||||
This can be shown by drawing a decision tree starting with the empty
|
||||
set, with each fork representing a choice of whether to insert the
|
||||
next element of the set in question. Since there are two possibilities
|
||||
at each fork and $n$ elements to consider for insertion, that gives
|
||||
$2^n$ total leaves of the tree.
|
||||
|
||||
* * * *
|
||||
|
||||
**Exercises 1.3**
|
||||
|
||||
1. Subsets of \{1,2,3,4\}: $\emptyset, \{1\}, \{2\}, \{3\}, \{4\},
|
||||
\{1,2\}, \{1,3\}, \{1,4\}, \{2,3\}, \{2,4\}, \{3,4\}, \{1,2,3\},
|
||||
\{1,2,4\}, \{1,3,4\}, \{2,3,4\}, \{1,2,3,4\}
|
||||
|
||||
* * * *
|
||||
|
||||
**Definition 1.4**
|
||||
: $A$ is a set. The *power set* of $A$ is another set,
|
||||
$\mathscr{P}(A)$, defined to be the set of all subsets of
|
||||
$A$. I.e. $\mathscr{P}(A) = \{X:X\subseteq A\}$.
|
||||
|
||||
**Fact 1.4**
|
||||
: If $A$ is a finite set, $|\mathscr{P}(A)| = 2^{|A|}$.
|
||||
|
||||
* * * *
|
||||
|
||||
**Definition 1.5**
|
||||
$A$ and $B$ are sets.
|
||||
- The *union* of $A$ and $B$ is the set $A\cup B = \{x : x \in A or x
|
||||
\in B\}$
|
||||
- The *intersection* of $A$ and $B$ is the set $A\cap B = \{x : x \in
|
||||
A and x \in B\}$
|
||||
- The *difference* of $A$ and $B$ is the set $A - B = \{x : x \in A
|
||||
and x \notin B\}$
|
||||
|
||||
The operations $\cup$ and $\cap$ obey the commutative law for sets,
|
||||
but $-$ does not.
|
||||
|
||||
* * * *
|
||||
|
||||
We usually discuss sets in some context. Our sets in that context will
|
||||
naturally be subsets of some other set, which we call the *universal
|
||||
set* or just *universe*. If we don't know specifically which set it
|
||||
is, we call it $U$.
|
||||
|
||||
For example, when discussing the set of prime numbers $P$, the
|
||||
*universal set* is $\Bbb{N}$. When we discuss geometric figures such
|
||||
as the set of points in a circle $C$, the universe would be
|
||||
$\Bbb{R}^2$.
|
||||
|
||||
**Definition 1.6**
|
||||
: $A$ is a set in the universe $U$. The *complement* of $A$ or $A\bar$
|
||||
is the set $A\bar = U - A$.
|
||||
|
||||
E.g. if $P$ is the set of prime numbers, then $$
|
||||
P\bar = \Bbb{N} - P = \{1,4,6,8,9,10,12,\dots\}
|
||||
$$ so $P\bar$ is the set of composite numbers and 1.
|
||||
|
|
Loading…
Reference in New Issue