Fixed align, I hope

master
Levi Pearson 2014-01-25 15:39:31 -07:00
parent e61950fb7d
commit 8f393e0188
1 changed files with 2 additions and 2 deletions

View File

@ -219,7 +219,7 @@ $$ so $\overline P$ is the set of composite numbers and 1.
$A_1, A_2,\dots, A_n$ are sets. $A_1, A_2,\dots, A_n$ are sets.
$$ $$
\align{ \begin{align}
A_1 \cup A_2 \cup A_3 \cup \dots \cup A_n &= A_1 \cup A_2 \cup A_3 \cup \dots \cup A_n &=
\left{x : x \in A_i \left{x : x \in A_i
\text{ for at least one set $A_i$, for } \text{ for at least one set $A_i$, for }
@ -228,5 +228,5 @@ A_1 \cap A_2 \cap A_3 \cap \dots \cap A-n &=
\left{x : x \in A_i \left{x : x \in A_i
\text{ for every set $A_i$, for } \text{ for every set $A_i$, for }
1 \leq i \leq n \right}\\ 1 \leq i \leq n \right}\\
} \end{align}
$$ $$