Fixed align, I hope
parent
e61950fb7d
commit
8f393e0188
math/proof
|
@ -219,7 +219,7 @@ $$ so $\overline P$ is the set of composite numbers and 1.
|
||||||
$A_1, A_2,\dots, A_n$ are sets.
|
$A_1, A_2,\dots, A_n$ are sets.
|
||||||
|
|
||||||
$$
|
$$
|
||||||
\align{
|
\begin{align}
|
||||||
A_1 \cup A_2 \cup A_3 \cup \dots \cup A_n &=
|
A_1 \cup A_2 \cup A_3 \cup \dots \cup A_n &=
|
||||||
\left{x : x \in A_i
|
\left{x : x \in A_i
|
||||||
\text{ for at least one set $A_i$, for }
|
\text{ for at least one set $A_i$, for }
|
||||||
|
@ -228,5 +228,5 @@ A_1 \cap A_2 \cap A_3 \cap \dots \cap A-n &=
|
||||||
\left{x : x \in A_i
|
\left{x : x \in A_i
|
||||||
\text{ for every set $A_i$, for }
|
\text{ for every set $A_i$, for }
|
||||||
1 \leq i \leq n \right}\\
|
1 \leq i \leq n \right}\\
|
||||||
}
|
\end{align}
|
||||||
$$
|
$$
|
||||||
|
|
Loading…
Reference in New Issue