An un-summarized change.
parent
4f725bfc51
commit
7d17bcf0b4
22
scratch.page
22
scratch.page
|
@ -18,6 +18,26 @@ the RSS values of each of the vector elements using $C_i$ as the
|
|||
weight. It is calculated in this manner:
|
||||
|
||||
$$
|
||||
\sigma_{F_s} = \frac{\sum_{i \in F_s} \sigma_i C_i}
|
||||
\sigma_{F_s} = \frac{\sum_{i \in F_s} \sigma_i\, C_i}
|
||||
{\sum_{i \in F_s} C_i}
|
||||
$$
|
||||
# Bayesian Regression
|
||||
|
||||
First, specify a set of probabilistic models of the data.
|
||||
|
||||
Let a member of this set be denoted by $\mathcal{R}_\alpha$
|
||||
|
||||
$\mathcal{R}_\alpha$ has a *prior* probability $P(\mathcal{H}_\alpha)$
|
||||
|
||||
On observation of $\mathcal{D}$, the *likelihood* of hypothesis
|
||||
$\mathcal{R}_{\alpha}$ is
|
||||
$\mathit{P}(\mathcal{D}|\mathcal{R}_{\alpha})$.
|
||||
|
||||
The *posterior* probability of $\mathcal{R}_{\alpha}$ is then given by
|
||||
$\mathit{P}(\mathcal{H}_{\alpha})\mathit{P}(\mathcal{D}|\mathcal{H}_{\alpha})$
|
||||
|
||||
This follows from **Bayes' Theorem** which says
|
||||
|
||||
$$
|
||||
P(A|B) = \frac{P(B | A)\, P(A)}{P(B)}
|
||||
$$
|
Loading…
Reference in New Issue