An un-summarized change.
This commit is contained in:
		
							
								
								
									
										22
									
								
								scratch.page
									
									
									
									
									
								
							
							
						
						
									
										22
									
								
								scratch.page
									
									
									
									
									
								
							@@ -18,6 +18,26 @@ the RSS values of each of the vector elements using $C_i$ as the
 | 
				
			|||||||
weight. It is calculated in this manner:
 | 
					weight. It is calculated in this manner:
 | 
				
			||||||
 | 
					
 | 
				
			||||||
$$
 | 
					$$
 | 
				
			||||||
\sigma_{F_s} = \frac{\sum_{i \in F_s} \sigma_i C_i}
 | 
					\sigma_{F_s} = \frac{\sum_{i \in F_s} \sigma_i\, C_i}
 | 
				
			||||||
                    {\sum_{i \in F_s} C_i}
 | 
					                    {\sum_{i \in F_s} C_i}
 | 
				
			||||||
$$
 | 
					$$
 | 
				
			||||||
 | 
					# Bayesian Regression
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					First, specify a set of probabilistic models of the data.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					Let a member of this set be denoted by $\mathcal{R}_\alpha$
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					$\mathcal{R}_\alpha$ has a *prior* probability $P(\mathcal{H}_\alpha)$
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					On observation of $\mathcal{D}$, the *likelihood* of hypothesis
 | 
				
			||||||
 | 
					$\mathcal{R}_{\alpha}$ is
 | 
				
			||||||
 | 
					$\mathit{P}(\mathcal{D}|\mathcal{R}_{\alpha})$.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					The *posterior* probability of $\mathcal{R}_{\alpha}$ is then given by
 | 
				
			||||||
 | 
					$\mathit{P}(\mathcal{H}_{\alpha})\mathit{P}(\mathcal{D}|\mathcal{H}_{\alpha})$
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					This follows from **Bayes' Theorem** which says
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					$$
 | 
				
			||||||
 | 
					P(A|B) = \frac{P(B | A)\, P(A)}{P(B)}
 | 
				
			||||||
 | 
					$$
 | 
				
			||||||
		Reference in New Issue
	
	Block a user