Testing math stufff
parent
a182b94ce9
commit
4f725bfc51
|
@ -0,0 +1,23 @@
|
||||||
|
---
|
||||||
|
title: Scratch Page
|
||||||
|
toc: no
|
||||||
|
format: markdown
|
||||||
|
...
|
||||||
|
|
||||||
|
# Math Stuff
|
||||||
|
|
||||||
|
On observation of $\mathcal{D}$, the *likelihood* of hypothesis
|
||||||
|
$\mathcal{R}_{\alpha}$ is
|
||||||
|
$\mathit{P}(\mathcal{D}|\mathcal{R}_{\alpha})$.
|
||||||
|
|
||||||
|
## Fingerprint Variance
|
||||||
|
|
||||||
|
Additionally, we associate a collective **RSS Variance**
|
||||||
|
$\sigma_{F_s}$ with each fingerprint, which is a weighed average of
|
||||||
|
the RSS values of each of the vector elements using $C_i$ as the
|
||||||
|
weight. It is calculated in this manner:
|
||||||
|
|
||||||
|
$$
|
||||||
|
\sigma_{F_s} = \frac{\sum_{i \in F_s} \sigma_i C_i}
|
||||||
|
{\sum_{i \in F_s} C_i}
|
||||||
|
$$
|
Loading…
Reference in New Issue