From 2dddf218c76c61948998ebdf7ed9f69ed13cbeb9 Mon Sep 17 00:00:00 2001 From: Levi Pearson Date: Sat, 25 Jan 2014 15:51:10 -0700 Subject: [PATCH] More notes --- math/proof/notes.page | 17 +++++++++++++++-- 1 file changed, 15 insertions(+), 2 deletions(-) diff --git a/math/proof/notes.page b/math/proof/notes.page index d3d8bc9..393343e 100644 --- a/math/proof/notes.page +++ b/math/proof/notes.page @@ -216,15 +216,28 @@ $$ so $\overline P$ is the set of composite numbers and 1. **Definition 1.7** -$A_1, A_2,\dots, A_n$ are sets. +$A_1, A_2,\dots, A_n$ are sets. Then $$\begin{align} A_1 \cup A_2 \cup A_3 \cup \dots \cup A_n &= \left\{x : x \in A_i \text{ for at least one set $A_i$, for } 1 \leq i \leq n\right\}\\ -A_1 \cap A_2 \cap A_3 \cap \dots \cap A-n &= +A_1 \cap A_2 \cap A_3 \cap \dots \cap A_n &= \left\{x : x \in A_i \text{ for every set $A_i$, for } 1 \leq i \leq n \right\}\\ \end{align}$$ + +Given $A_1, A_2, \dots, A_n$ we define + +$$\begin{align} +\bigcup{i=1}{n} A_i &= A_1 \cup A_2 \cup \dots \cup A_n\\ +\bigcap{i=1}{n} A_i &= A_1 \cap A_2 \cap \dots \cap A_n\\ +\end{align}$$ + +$$ +A_1 = \{-1,0,1}, A_2 = \{-2,0,2}, \dots, A_i = \{-i,0,i}, \dots\\ +\bigcup{i=1}{\inf} A_i = \Bbb{Z} \text{ and } +\bigcap{i=1}{\inf} A_i = \{0\}\\ +$$