
Variable Scope
Not An Oral Hygeine Product

Levi Pearson

1



Introduction



Goals

• Understand How Variable Naming Works
• Learn What “Scope” Really Means
• See How Different Languages Handle Scope
• Identify Tricky Bits in Javascript Scope Rules

3



Variables, Names, and Scope



On the difficulty of names

There are only two hard things in Computer Science: cache invalidation
and naming things.
– Phil Karlton

5



Some definitions

• A variable is a name bound to a storage location within an environment
• An environment holds all variable bindings visible at some point in a
program.

• Sometimes an environment is called a context

6



What about scope?

• The scope of a variable refers to the region of the program where its binding
is visible in the environment

or

• Scope is the property of a variable that defines what part of the program its
name can be used in to identify the variable

7



Static vs. dynamic

• Static or lexical: Scope determined just by text of program
• Dynamic: Scope affected by bindings in the run-time stack

8



Early vs. late

• Lexical scope can be determined at compile-time; sometimes called early
binding

• Dynamic scope relies on run-time information; sometimes called late
binding

9



Shadowing

• Scopes of variables with the same name can overlap
• Rules determine which scope “wins” at any point
• The losers are said to be shadowed by the winner
• Rule is usually a variation on “most recent declaration wins”

10



Levels of scope



Global scope

• Global scope extends through the whole program
• Sometimes restricted to just after the declaration.

12



Function scope

• Function scope extends through the whole function body
• Sometimes restricted to just after the declaration, e.g. C
• When not restricted, it is sometimes called hoisting the declaration
• Hoisting affects scope, but not initialization point

13



// Shadowing and Hoisting

var x = 1;

function foo() {
console.log(x);
var x = 2;
console.log(x);

}

console.log(x);

14



// Shadowing and Hoisting

var x = 1;

function foo() {
console.log(x); // x is undefined!
var x = 2;
console.log(x); // prints 2

}

console.log(x); // prints 1

15



Block scope

• Block scope extends through a compound statement block
• Variables declared in control statements (like for) are scoped to the block
• Javascript (pre-ES6) and Python don’t have block scopes!
• ES6 keeps function scope for var, adds let and const for block scope

16



// Block Scope
var y = 2;
function foo() {

let x = 5;
for (let x = 0; x < 3; x++) {

let y = x + 1;
console.log(y);

}
console.log(x);
console.log(y);
let y = 3;
console.log(y);

}
console.log(y);

17



// Block Scope
var y = 2;
function foo() {

let x = 5;
for (let x = 0; x < 3; x++) {

let y = x + 1;
console.log(y); // prints 1, 2, 3

}
console.log(x); // prints 5
console.log(y); // ReferenceError
let y = 3;
console.log(y); // prints 3

}
console.log(y); // prints 2

18



Other scopes

• In C and C++, there is a file scope
• Functional languages often provide expression scope
• Languages with module systems provide module scope
• Python has a module system and module scope; ES6 does too

19



Dynamic scope

• Dynamic scope refers to time periods instead of text regions
• Dynamic global scope refers to the whole program execution
• Dynamic function scope

• starts when execution enters the function body
• extends through any function calls in the body
• ends when the function returns

• Dynamic scope is default in Bourne-style shells, PowerShell, Emacs Lisp
• Dynamic scope is optional in Perl, Common Lisp, and others

20



// In a hypothetical dynamically-scoped Javascript
var x = 1;

function foo() {
var x = 2;
bar();

}

function bar() {
console.log(x);

}

foo();
bar();

21



// In a hypothetical dynamically-scoped Javascript
var x = 1;

function foo() {
var x = 2;
bar();

}

function bar() {
console.log(x);

}

foo(); // prints 2
bar(); // prints 1

22



Tricky Bits



Assignment

• What should be the scope of a variable created by assignment?
• Local?

• Can’t assign to a variable in enclosing environment
• Will create a new variable shadowing the one you wanted to change
• Python works this way

• Global?
• Might accidentally change existing global instead of making a new one
• Can work around it by declaring all your variables
• Javascript works this way

• Just make declaration of variables mandatory!

24



Closures

• A variable is free within a function body if:
• it is referenced in the body
• it is not declared in the body
• it is not a parameter to the function

• A function closes over free variables bound in an enclosing environment
• The variables are found in its closure
• We call a function returned from its enclosing environment a closure too
• Bindings in a closure keep the scope from their definition point, even if the
function is invoked in a different environment

25



// Fun with closures!
function a() {

var x = 0;
return function() {

x++; console.log(x);
}

}
function b(g) {

var x = 0;
g(); console.log(x);

}
var c1 = a(), c2 = a();
b(c1);
b(c2);
b(c1);

26



// Fun with closures!
function a() {

var x = 0;
return function() {

x++; console.log(x);
}

}
function b(g) {

var x = 0;
g(); console.log(x);

}
var c1 = a(), c2 = a();
b(c1); // prints 1, 0
b(c2); // prints 1, 0
b(c1); // prints 2, 0

27



This

• It is dynamically scoped, late-bound
• Rules for this:

1. invoked as a function, it is the global object
2. invoked with new, it is the object the constructor will return
3. invoked as a method, it is the object before the .
4. invoked with call or apply, it’s what you asked it to be
5. wrapped by Function.prototype.bind, it’s bind’s argument
6. invoked as a DOM Event handler, it’s the element the event fired from

• For closure creation, this is not a free variable
• Except for ES6 arrow functions!

28



Thanks for listening!


	Introduction
	Variables, Names, and Scope
	Levels of scope
	Tricky Bits
	Thanks for listening!

