
Embedded Rust
Intro and Ecosystem Overview

Levi Pearson

1

Overview

Background

I am:

• A very experienced embedded systems programmer
• A moderately experienced Rustacean
• Pretty new at the combination

3

Questions to answer

• What are embedded systems?
• What makes Rust interesting in that context?
• What resources are there right now?
• How do I get started?

4

Embedded Systems?

A (very general) definition

When a device has a computerized, software-controlled component as part of
its mechanism, which supports its primary function rather than the computer
being its primary function, that component constitutes an embedded system.

6

Examples

• A digital scale’s control system
• The engine management computer in a car
• The disk controller in a hard drive
• A factory process control computer

7

They are everywhere

• Microcontrollers start in the ~$0.01 price range
• They can be as small as a grain of rice
• They are in credit cards and SIM cards
• They are also often off-the-shelf Windows boxes

8

Microcontrollers

• Single-chip computers specialized for embedded control
• Much wider variety of architecture
• Integrated peripherals:

• Memory (RAM/Flash)
• Timers
• Sensors
• Communication bus interfaces
• Display controllers

9

Why Rust?

The landscape today

• Most embedded systems are still done in C
• C was a big step up from assembly
• C is still very error-prone
• We are putting more software in more things

11

Why not other safe languages?

• Real-time response requirements
• Resource (often RAM/Flash) constraints
• Memory layout and representation control
• Perception (no one thinks of Ada)

12

Big wins

• The big enabler: #[no_std] and powerful, alloc-free core library
• Static resource analysis via ownership and hiding
• Modularity without overhead via traits
• Flexible, easy-to-use builds including cross-compiling with cargo
• Industrial strength multi-arch compiler back-end via LLVM

13

Rusty resources

Compiler and tools

• rustup target list | grep none for no-OS embedded targets
• cargo install cargo-binutils for cargo size, cargo nm, etc.
• rustup component add llvm-tools-preview for LLVM-native binutils
• gdb built for the target arch for debugging
• openocd to drive the programmer/debugger module

15

Embedded-wg

• Embedded Rust Book
• Awesome / Not-Yet-Awesome Lists
• svd2rust and Peripheral Access Crates
• embedded-hal and HAL Crates
• Board Support Crates
• rtfm “Real-Time For The Masses” framework

16

Levels of maturity

• Compiler back-ends for ARM and some other architectures are solid
• Much work is now possible with stable Rust
• Some patterns for safety are well-defined, others are still experimental
• Patterns for modular, reusable code are still in progress
• Ferrous Systems - works with embedded-wg and provides training/support

17

Where to start?

Emulation!

• QEMU emulates a pair of ARM Cortex-M3 evaluation boards
• The ml3s6965 board has a minimal peripheral support crate
• Both the Embedded Book and RTFM Book walk through starting with it

19

Development boards

• Vendor-developed boards can be expensive, but have nice components
• Many hobbyist-oriented boards are available, usually cheaper!
• Cheap knock-offs of open-hardware boards are really cheap
• Stay away from AVR-architecture Arduino-style boards for now!
• Risc-V and MSP-430 have llvm support, but not as much community support

20

Sensors, actuators, etc.

• Many boards have LEDs, buttons, capacitive touch, etc.
• Adafruit, Sparkfun, Pololu have interesting, well-designed break-outs
• Lots of cheap stuff from China, of varying quality!
• Salvage from old electronics junk

21

Time left?

Discussion/Demos

• General or rust-specific embedded Q&A
• Walk-through tool + qemu install and first program
• Look at some example code
• Interest in future workshop w/real hardware?

23

	Overview
	Embedded Systems?
	Why Rust?
	Rusty resources
	Where to start?
	Time left?

