Initial commit

master
Levi Pearson 2019-03-14 18:26:26 -06:00
commit 205f9411fb
16 changed files with 647 additions and 0 deletions

33
.cargo/config Normal file
View File

@ -0,0 +1,33 @@
#[target.thumbv7m-none-eabi]
# uncomment this to make `cargo run` execute programs on QEMU
# runner = "qemu-system-arm -cpu cortex-m3 -machine lm3s6965evb -nographic -semihosting-config enable=on,target=native -kernel"
[target.'cfg(all(target_arch = "arm", target_os = "none"))']
# uncomment ONE of these three option to make `cargo run` start a GDB session
# which option to pick depends on your system
# runner = "arm-none-eabi-gdb -q -x openocd.gdb"
runner = "gdb-multiarch -q -x openocd.gdb"
# runner = "gdb -q -x openocd.gdb"
rustflags = [
# LLD (shipped with the Rust toolchain) is used as the default linker
"-C", "link-arg=-Tlink.x",
# if you run into problems with LLD switch to the GNU linker by commenting out
# this line
# "-C", "linker=arm-none-eabi-ld",
# if you need to link to pre-compiled C libraries provided by a C toolchain
# use GCC as the linker by commenting out both lines above and then
# uncommenting the three lines below
# "-C", "linker=arm-none-eabi-gcc",
# "-C", "link-arg=-Wl,-Tlink.x",
# "-C", "link-arg=-nostartfiles",
]
[build]
# Pick ONE of these compilation targets
# target = "thumbv6m-none-eabi" # Cortex-M0 and Cortex-M0+
# target = "thumbv7m-none-eabi" # Cortex-M3
# target = "thumbv7em-none-eabi" # Cortex-M4 and Cortex-M7 (no FPU)
target = "thumbv7em-none-eabihf" # Cortex-M4F and Cortex-M7F (with FPU)

5
.gitignore vendored Normal file
View File

@ -0,0 +1,5 @@
**/*.rs.bk
.#*
.gdb_history
Cargo.lock
target/

31
Cargo.toml Normal file
View File

@ -0,0 +1,31 @@
[package]
authors = ["Levi Pearson <levipearson@gmail.com>"]
edition = "2018"
readme = "README.md"
name = "msp432-app"
version = "0.1.0"
[dependencies]
cortex-m = "0.5.8"
cortex-m-rt = "0.6.5"
cortex-m-semihosting = "0.3.2"
panic-halt = "0.2.0"
panic-semihosting = "*"
msp432p401r = { path = "../msp432p401r", features = ["rt"] }
# Uncomment for the panic example.
# panic-itm = "0.4.0"
# Uncomment for the allocator example.
# alloc-cortex-m = "0.3.5"
# this lets you use `cargo fix`!
[[bin]]
name = "msp432-app"
test = false
bench = false
[profile.release]
codegen-units = 1 # better optimizations
debug = true # symbols are nice and they don't increase the size on Flash
lto = true # better optimizations

129
README.md Normal file
View File

@ -0,0 +1,129 @@
# `cortex-m-quickstart`
> A template for building applications for ARM Cortex-M microcontrollers
This project is developed and maintained by the [Cortex-M team][team].
## Dependencies
To build embedded programs using this template you'll need:
- Rust 1.31, 1.30-beta, nightly-2018-09-13 or a newer toolchain. e.g. `rustup
default beta`
- The `cargo generate` subcommand. [Installation
instructions](https://github.com/ashleygwilliams/cargo-generate#installation).
- `rust-std` components (pre-compiled `core` crate) for the ARM Cortex-M
targets. Run:
``` console
$ rustup target add thumbv6m-none-eabi thumbv7m-none-eabi thumbv7em-none-eabi thumbv7em-none-eabihf
```
## Using this template
**NOTE**: This is the very short version that only covers building programs. For
the long version, which additionally covers flashing, running and debugging
programs, check [the embedded Rust book][book].
[book]: https://rust-embedded.github.io/book
0. Before we begin you need to identify some characteristics of the target
device as these will be used to configure the project:
- The ARM core. e.g. Cortex-M3.
- Does the ARM core include an FPU? Cortex-M4**F** and Cortex-M7**F** cores do.
- How much Flash memory and RAM does the target device has? e.g. 256 KiB of
Flash and 32 KiB of RAM.
- Where are Flash memory and RAM mapped in the address space? e.g. RAM is
commonly located at address `0x2000_0000`.
You can find this information in the data sheet or the reference manual of your
device.
In this example we'll be using the STM32F3DISCOVERY. This board contains an
STM32F303VCT6 microcontroller. This microcontroller has:
- A Cortex-M4F core that includes a single precision FPU
- 256 KiB of Flash located at address 0x0800_0000.
- 40 KiB of RAM located at address 0x2000_0000. (There's another RAM region but
for simplicity we'll ignore it).
1. Instantiate the template.
``` console
$ cargo generate --git https://github.com/rust-embedded/cortex-m-quickstart
Project Name: app
Creating project called `app`...
Done! New project created /tmp/app
$ cd app
```
2. Set a default compilation target. There are four options as mentioned at the
bottom of `.cargo/config`. For the STM32F303VCT6, which has a Cortex-M4F
core, we'll pick the `thumbv7em-none-eabihf` target.
``` console
$ tail -n6 .cargo/config
```
``` toml
[build]
# Pick ONE of these compilation targets
# target = "thumbv6m-none-eabi" # Cortex-M0 and Cortex-M0+
# target = "thumbv7m-none-eabi" # Cortex-M3
# target = "thumbv7em-none-eabi" # Cortex-M4 and Cortex-M7 (no FPU)
target = "thumbv7em-none-eabihf" # Cortex-M4F and Cortex-M7F (with FPU)
```
3. Enter the memory region information into the `memory.x` file.
``` console
$ cat memory.x
/* Linker script for the STM32F303VCT6 */
MEMORY
{
/* NOTE 1 K = 1 KiBi = 1024 bytes */
FLASH : ORIGIN = 0x08000000, LENGTH = 256K
RAM : ORIGIN = 0x20000000, LENGTH = 40K
}
```
4. Build the template application or one of the examples.
``` console
$ cargo build
```
# License
This template is licensed under either of
- Apache License, Version 2.0 ([LICENSE-APACHE](LICENSE-APACHE) or
http://www.apache.org/licenses/LICENSE-2.0)
- MIT license ([LICENSE-MIT](LICENSE-MIT) or http://opensource.org/licenses/MIT)
at your option.
## Contribution
Unless you explicitly state otherwise, any contribution intentionally submitted
for inclusion in the work by you, as defined in the Apache-2.0 license, shall be
dual licensed as above, without any additional terms or conditions.
## Code of Conduct
Contribution to this crate is organized under the terms of the [Rust Code of
Conduct][CoC], the maintainer of this crate, the [Cortex-M team][team], promises
to intervene to uphold that code of conduct.
[CoC]: https://www.rust-lang.org/policies/code-of-conduct
[team]: https://github.com/rust-embedded/wg#the-cortex-m-team

18
build.rs Normal file
View File

@ -0,0 +1,18 @@
use std::env;
use std::fs::File;
use std::io::Write;
use std::path::PathBuf;
fn main() {
// Put the linker script somewhere the linker can find it
let out = &PathBuf::from(env::var_os("OUT_DIR").unwrap());
File::create(out.join("memory.x"))
.unwrap()
.write_all(include_bytes!("memory.x"))
.unwrap();
println!("cargo:rustc-link-search={}", out.display());
// Only re-run the build script when memory.x is changed,
// instead of when any part of the source code changes.
println!("cargo:rerun-if-changed=memory.x");
}

37
memory.x Normal file
View File

@ -0,0 +1,37 @@
MEMORY
{
/* NOTE 1 K = 1 KiBi = 1024 bytes */
/* Code Zone - 0x00000000 to 0x1FFFFFFF */
FLASH : ORIGIN = 0x00000000, LENGTH = 256K
RAM_ALIAS : ORIGIN = 0x01000000, LENGTH = 64K
ROM : ORIGIN = 0x02000000, LENGTH = 32K
/* SRAM Region - 0x00000000 to 0x003FFFFF */
RAM : ORIGIN = 0x20000000, LENGTH = 64K
RAM_BITBAND : ORIGIN = 0x22000000, LENGTH = 1024K
}
/* This is where the call stack will be allocated. */
/* The stack is of the full descending type. */
/* You may want to use this variable to locate the call stack and static
variables in different memory regions. Below is shown the default value */
/* _stack_start = ORIGIN(RAM) + LENGTH(RAM); */
/* You can use this symbol to customize the location of the .text section */
/* If omitted the .text section will be placed right after the .vector_table
section */
/* This is required only on microcontrollers that store some configuration right
after the vector table */
/* _stext = ORIGIN(FLASH) + 0x400; */
/* Example of putting non-initialized variables into custom RAM locations. */
/* This assumes you have defined a region RAM2 above, and in the Rust
sources added the attribute `#[link_section = ".ram2bss"]` to the data
you want to place there. */
/* Note that the section will not be zero-initialized by the runtime! */
/* SECTIONS {
.ram2bss (NOLOAD) : ALIGN(4) {
*(.ram2bss);
. = ALIGN(4);
} > RAM2
} INSERT AFTER .bss;
*/

6
openocd.cfg Normal file
View File

@ -0,0 +1,6 @@
# OpenOCD configuration for the MSP432P401R LaunchPad
source [find interface/xds110.cfg]
adapter_khz 2500
transport select swd
source [find target/ti_msp432.cfg]

35
openocd.gdb Normal file
View File

@ -0,0 +1,35 @@
target extended-remote :3333
# print demangled symbols
set print asm-demangle on
# set backtrace limit to not have infinite backtrace loops
set backtrace limit 32
# detect unhandled exceptions, hard faults and panics
break DefaultHandler
break HardFault
break rust_begin_unwind
# *try* to stop at the user entry point (it might be gone due to inlining)
break main
monitor arm semihosting enable
# # send captured ITM to the file itm.fifo
# # (the microcontroller SWO pin must be connected to the programmer SWO pin)
# # 8000000 must match the core clock frequency
# monitor tpiu config internal itm.txt uart off 8000000
# # OR: make the microcontroller SWO pin output compatible with UART (8N1)
# # 8000000 must match the core clock frequency
# # 2000000 is the frequency of the SWO pin
# monitor tpiu config external uart off 8000000 2000000
# # enable ITM port 0
# monitor itm port 0 on
#load
# start the process but immediately halt the processor
#stepi

View File

@ -0,0 +1,96 @@
//! Debugging a crash (exception)
//!
//! Most crash conditions trigger a hard fault exception, whose handler is defined via
//! `exception!(HardFault, ..)`. The `HardFault` handler has access to the exception frame, a
//! snapshot of the CPU registers at the moment of the exception.
//!
//! This program crashes and the `HardFault` handler prints to the console the contents of the
//! `ExceptionFrame` and then triggers a breakpoint. From that breakpoint one can see the backtrace
//! that led to the exception.
//!
//! ``` text
//! (gdb) continue
//! Program received signal SIGTRAP, Trace/breakpoint trap.
//! __bkpt () at asm/bkpt.s:3
//! 3 bkpt
//!
//! (gdb) backtrace
//! #0 __bkpt () at asm/bkpt.s:3
//! #1 0x080030b4 in cortex_m::asm::bkpt () at $$/cortex-m-0.5.0/src/asm.rs:19
//! #2 rust_begin_unwind (args=..., file=..., line=99, col=5) at $$/panic-semihosting-0.2.0/src/lib.rs:87
//! #3 0x08001d06 in core::panicking::panic_fmt () at libcore/panicking.rs:71
//! #4 0x080004a6 in crash::hard_fault (ef=0x20004fa0) at examples/crash.rs:99
//! #5 0x08000548 in UserHardFault (ef=0x20004fa0) at <exception macros>:10
//! #6 0x0800093a in HardFault () at asm.s:5
//! Backtrace stopped: previous frame identical to this frame (corrupt stack?)
//! ```
//!
//! In the console output one will find the state of the Program Counter (PC) register at the time
//! of the exception.
//!
//! ``` text
//! panicked at 'HardFault at ExceptionFrame {
//! r0: 0x2fffffff,
//! r1: 0x2fffffff,
//! r2: 0x080051d4,
//! r3: 0x080051d4,
//! r12: 0x20000000,
//! lr: 0x08000435,
//! pc: 0x08000ab6,
//! xpsr: 0x61000000
//! }', examples/crash.rs:106:5
//! ```
//!
//! This register contains the address of the instruction that caused the exception. In GDB one can
//! disassemble the program around this address to observe the instruction that caused the
//! exception.
//!
//! ``` text
//! (gdb) disassemble/m 0x08000ab6
//! Dump of assembler code for function core::ptr::read_volatile:
//! 451 pub unsafe fn read_volatile<T>(src: *const T) -> T {
//! 0x08000aae <+0>: sub sp, #16
//! 0x08000ab0 <+2>: mov r1, r0
//! 0x08000ab2 <+4>: str r0, [sp, #8]
//!
//! 452 intrinsics::volatile_load(src)
//! 0x08000ab4 <+6>: ldr r0, [sp, #8]
//! -> 0x08000ab6 <+8>: ldr r0, [r0, #0]
//! 0x08000ab8 <+10>: str r0, [sp, #12]
//! 0x08000aba <+12>: ldr r0, [sp, #12]
//! 0x08000abc <+14>: str r1, [sp, #4]
//! 0x08000abe <+16>: str r0, [sp, #0]
//! 0x08000ac0 <+18>: b.n 0x8000ac2 <core::ptr::read_volatile+20>
//!
//! 453 }
//! 0x08000ac2 <+20>: ldr r0, [sp, #0]
//! 0x08000ac4 <+22>: add sp, #16
//! 0x08000ac6 <+24>: bx lr
//!
//! End of assembler dump.
//! ```
//!
//! `ldr r0, [r0, #0]` caused the exception. This instruction tried to load (read) a 32-bit word
//! from the address stored in the register `r0`. Looking again at the contents of `ExceptionFrame`
//! we see that the `r0` contained the address `0x2FFF_FFFF` when this instruction was executed.
//!
//! ---
#![no_main]
#![no_std]
extern crate panic_halt;
use core::ptr;
use cortex_m_rt::entry;
#[entry]
fn main() -> ! {
unsafe {
// read an address outside of the RAM region; this causes a HardFault exception
ptr::read_volatile(0x2FFF_FFFF as *const u32);
}
loop {}
}

View File

@ -0,0 +1,37 @@
//! Overriding an exception handler
//!
//! You can override an exception handler using the [`#[exception]`][1] attribute.
//!
//! [1]: https://rust-embedded.github.io/cortex-m-rt/0.6.1/cortex_m_rt_macros/fn.exception.html
//!
//! ---
#![deny(unsafe_code)]
#![no_main]
#![no_std]
extern crate panic_halt;
use cortex_m::peripheral::syst::SystClkSource;
use cortex_m::Peripherals;
use cortex_m_rt::{entry, exception};
use cortex_m_semihosting::hprint;
#[entry]
fn main() -> ! {
let p = Peripherals::take().unwrap();
let mut syst = p.SYST;
// configures the system timer to trigger a SysTick exception every second
syst.set_clock_source(SystClkSource::Core);
syst.set_reload(8_000_000); // period = 1s
syst.enable_counter();
syst.enable_interrupt();
loop {}
}
#[exception]
fn SysTick() {
hprint!(".").unwrap();
}

View File

@ -0,0 +1,20 @@
//! Prints "Hello, world!" on the host console using semihosting
#![no_main]
#![no_std]
extern crate panic_halt;
use cortex_m_rt::entry;
use cortex_m_semihosting::{debug, hprintln};
#[entry]
fn main() -> ! {
hprintln!("Hello, world!").unwrap();
// exit QEMU
// NOTE do not run this on hardware; it can corrupt OpenOCD state
debug::exit(debug::EXIT_SUCCESS);
loop {}
}

33
original-examples/itm.rs Normal file
View File

@ -0,0 +1,33 @@
//! Sends "Hello, world!" through the ITM port 0
//!
//! ITM is much faster than semihosting. Like 4 orders of magnitude or so.
//!
//! **NOTE** Cortex-M0 chips don't support ITM.
//!
//! You'll have to connect the microcontroller's SWO pin to the SWD interface. Note that some
//! development boards don't provide this option.
//!
//! You'll need [`itmdump`] to receive the message on the host plus you'll need to uncomment two
//! `monitor` commands in the `.gdbinit` file.
//!
//! [`itmdump`]: https://docs.rs/itm/0.2.1/itm/
//!
//! ---
#![no_main]
#![no_std]
extern crate panic_halt;
use cortex_m::{iprintln, Peripherals};
use cortex_m_rt::entry;
#[entry]
fn main() -> ! {
let mut p = Peripherals::take().unwrap();
let stim = &mut p.ITM.stim[0];
iprintln!(stim, "Hello, world!");
loop {}
}

View File

@ -0,0 +1,28 @@
//! Changing the panicking behavior
//!
//! The easiest way to change the panicking behavior is to use a different [panic handler crate][0].
//!
//! [0]: https://crates.io/keywords/panic-impl
#![no_main]
#![no_std]
// Pick one of these panic handlers:
// `panic!` halts execution; the panic message is ignored
extern crate panic_halt;
// Reports panic messages to the host stderr using semihosting
// NOTE to use this you need to uncomment the `panic-semihosting` dependency in Cargo.toml
// extern crate panic_semihosting;
// Logs panic messages using the ITM (Instrumentation Trace Macrocell)
// NOTE to use this you need to uncomment the `panic-itm` dependency in Cargo.toml
// extern crate panic_itm;
use cortex_m_rt::entry;
#[entry]
fn main() -> ! {
panic!("Oops")
}

View File

@ -0,0 +1,57 @@
//! Conditionally compiling tests with std and our executable with no_std.
//!
//! Rust's built in unit testing framework requires the standard library,
//! but we need to build our final executable with no_std.
//! The testing framework also generates a `main` method, so we need to only use the `#[entry]`
//! annotation when building our final image.
//! For more information on why this example works, see this excellent blog post.
//! https://os.phil-opp.com/unit-testing/
//!
//! Running this example:
//!
//! Ensure there are no targets specified under `[build]` in `.cargo/config`
//! In order to make this work, we lose the convenience of having a default target that isn't the
//! host.
//!
//! cargo build --example test_on_host --target thumbv7m-none-eabi
//! cargo test --example test_on_host
#![cfg_attr(test, allow(unused_imports))]
#![cfg_attr(not(test), no_std)]
#![cfg_attr(not(test), no_main)]
// pick a panicking behavior
#[cfg(not(test))]
extern crate panic_halt; // you can put a breakpoint on `rust_begin_unwind` to catch panics
// extern crate panic_abort; // requires nightly
// extern crate panic_itm; // logs messages over ITM; requires ITM support
// extern crate panic_semihosting; // logs messages to the host stderr; requires a debugger
use cortex_m::asm;
use cortex_m_rt::entry;
#[cfg(not(test))]
#[entry]
fn main() -> ! {
asm::nop(); // To not have main optimize to abort in release mode, remove when you add code
loop {
// your code goes here
}
}
fn add(a: i32, b: i32) -> i32 {
a + b
}
#[cfg(test)]
mod test {
use super::*;
#[test]
fn foo() {
println!("tests work!");
assert!(2 == add(1,1));
}
}

81
src/main.rs Normal file
View File

@ -0,0 +1,81 @@
#![no_std]
#![no_main]
// pick a panicking behavior
extern crate panic_halt; // you can put a breakpoint on `rust_begin_unwind` to catch panics
// extern crate panic_abort; // requires nightly
// extern crate panic_itm; // logs messages over ITM; requires ITM support
// extern crate panic_semihosting; // logs messages to the host stderr; requires a debugger
use cortex_m::{self, peripheral::syst::SystClkSource};
use cortex_m_rt::entry;
use msp432p401r;
use core::num::Wrapping;
const PIN0: u8 = (1u8 << 0);
const PIN1: u8 = (1u8 << 1);
const PIN2: u8 = (1u8 << 2);
//const PIN3: u8 = (1u8 << 3);
const PIN4: u8 = (1u8 << 4);
//const PIN5: u8 = (1u8 << 5);
//const PIN6: u8 = (1u8 << 6);
//const PIN7: u8 = (1u8 << 7);
const WDOG_PWORD: u8 = 0x5a;
#[entry]
fn main() -> ! {
let cp = cortex_m::Peripherals::take().unwrap();
let p = msp432p401r::Peripherals::take().unwrap();
let mut syst = cp.SYST;
let wdt = p.WDT_A;
let dio = p.DIO;
// disable watchdog timer
wdt.wdtctl.write(|w| unsafe {
w.wdtpw().bits(WDOG_PWORD)
.wdthold().wdthold_1()
});
// configure the system timer to wrap around every ~1 second
syst.set_clock_source(SystClkSource::Core);
syst.set_reload(20_000);
syst.enable_counter();
// configure digital IO pins
dio.padir.modify(|_r, w| unsafe {
w.p1dir().bits(PIN0)
.p2dir().bits(PIN0 | PIN1 | PIN2)
});
// Enable pull-up on P1.4 switch
dio.paren.modify(|_r, w| unsafe { w.p1ren().bits(PIN4) });
dio.pads.modify(|_r, w| unsafe { w.p1ds().bits(PIN4) });
// Turn on LED1 on P1.0 and enable pull-up on P1.1 switch
dio.paout.write(|w| unsafe {
w.p1out().bits(PIN0 | PIN4)
.p2out().bits(0)
});
let mut count: Wrapping<u16> = Wrapping(0);
let mut input: u8;
loop {
while !syst.has_wrapped() {}
// The button pulls the input to GND
input = (dio.pain.read().p1in().bits() & PIN4) >> 4;
count += Wrapping(1);
let _led1: u8 = ((count.0 & 0x0100) >> 8) as u8;
let led2: u8 = ((count.0 & 0b0000_0111_0000_0000) >> 8) as u8;
// toggle LEDs
dio.paout.write(|w| unsafe {
w.p1out().bits(input | PIN4)
.p2out().bits(led2)
});
}
}

1
upload.sh Normal file
View File

@ -0,0 +1 @@
sudo /home/levi/energia-1.6.10E18/hardware/tools/DSLite/DebugServer/bin/DSLite load --config /home/levi/energia-1.6.10E18/hardware/tools/DSLite/MSP_EXP432P401R.ccxml --file ~/Projects/Rust/msp432-app/target/thumbv7em-none-eabihf/debug/msp432-app