Data structure slides and source code
commit
2d9121e663
|
@ -0,0 +1,22 @@
|
|||
module DenseNat where
|
||||
|
||||
data Digit = Zero | One deriving (Show, Ord, Eq, Enum)
|
||||
|
||||
type DenseNat = [Digit] -- increasing order of significance
|
||||
|
||||
inc :: DenseNat -> DenseNat
|
||||
inc [] = [One]
|
||||
inc (Zero : ds) = One : ds
|
||||
inc (One : ds) = Zero : inc ds -- carry
|
||||
|
||||
dec :: DenseNat -> DenseNat
|
||||
dec [One] = []
|
||||
dec (One : ds) = Zero : ds
|
||||
dec (Zero : ds) = One : dec ds -- borrow
|
||||
|
||||
add :: DenseNat -> DenseNat -> DenseNat
|
||||
add ds [] = ds
|
||||
add [] ds = ds
|
||||
add (d : ds1) (Zero : ds2) = d : add ds1 ds2
|
||||
add (Zero : ds1) (d : ds2) = d : add ds1 ds2
|
||||
add (One : ds1) (One : ds2) = Zero : inc (add ds1 ds2) -- carry
|
|
@ -0,0 +1,97 @@
|
|||
module HAMT where
|
||||
|
||||
import Data.Bits
|
||||
import Data.Word
|
||||
import Prelude hiding (lookup, (++))
|
||||
|
||||
import Data.Vector (Vector, singleton, unsafeDrop, unsafeIndex,
|
||||
unsafeTake, unsafeUpdate, (++))
|
||||
|
||||
type Key = Word
|
||||
type Bitmap = Word
|
||||
type Shift = Int
|
||||
type Subkey = Int -- we need to use this to do shifts, so an Int it is
|
||||
|
||||
data HAMT a = Empty
|
||||
| BitmapIndexed {-# UNPACK #-} !Bitmap !(Vector (HAMT a))
|
||||
| Leaf {-# UNPACK #-} !Key a
|
||||
| Full {-# UNPACK #-} !(Vector (HAMT a))
|
||||
deriving (Show)
|
||||
|
||||
|
||||
-- These architecture dependent constants
|
||||
|
||||
bitsPerSubkey :: Int
|
||||
bitsPerSubkey = floor . logBase 2 . fromIntegral . bitSize $ (undefined :: Word)
|
||||
|
||||
subkeyMask :: Bitmap
|
||||
subkeyMask = 1 `shiftL` bitsPerSubkey - 1
|
||||
|
||||
maskIndex :: Bitmap -> Bitmap -> Int
|
||||
maskIndex b m = popCount (b .&. (m - 1))
|
||||
|
||||
mask :: Key -> Shift -> Bitmap
|
||||
mask k s = shiftL 1 (subkey k s)
|
||||
|
||||
{-# INLINE subkey #-}
|
||||
subkey :: Key -> Shift -> Int
|
||||
subkey k s = fromIntegral $ shiftR k s .&. subkeyMask
|
||||
|
||||
empty :: HAMT a
|
||||
empty = Empty
|
||||
|
||||
lookup :: Key -> HAMT a -> Maybe a
|
||||
lookup k t = lookup' k 0 t
|
||||
|
||||
lookup' :: Key -> Shift -> HAMT a -> Maybe a
|
||||
lookup' k s t
|
||||
= case t of
|
||||
Empty -> Nothing
|
||||
Leaf kx x
|
||||
| k == kx -> Just x
|
||||
| otherwise -> Nothing
|
||||
BitmapIndexed b v ->
|
||||
let m = mask k s in
|
||||
if b .&. m == 0
|
||||
then Nothing
|
||||
else lookup' k (s+bitsPerSubkey) (unsafeIndex v (maskIndex b m))
|
||||
Full v -> lookup' k (s+bitsPerSubkey) (unsafeIndex v (subkey k s))
|
||||
|
||||
insert :: Key -> a -> HAMT a -> HAMT a
|
||||
insert k v t = insert' k 0 v t
|
||||
|
||||
insert' :: Key -> Shift -> a -> HAMT a -> HAMT a
|
||||
insert' kx s x t
|
||||
= case t of
|
||||
Empty -> Leaf kx x
|
||||
Leaf ky y
|
||||
| ky == kx -> Leaf kx x
|
||||
| otherwise ->
|
||||
insert' kx s x $ BitmapIndexed (mask ky s) (singleton t)
|
||||
BitmapIndexed b v -> {-# SCC "i-Bitmap" #-}
|
||||
let m = mask kx s
|
||||
i = maskIndex b m in
|
||||
if b .&. m == 0
|
||||
then let l = Leaf kx x
|
||||
v' = unsafeTake i v ++ singleton l ++ unsafeDrop i v
|
||||
b' = b .|. m in
|
||||
if b' == 0xFFFFFFFF
|
||||
then Full v'
|
||||
else BitmapIndexed b' v'
|
||||
else {-# SCC "i-Bitmap-conflict" #-}
|
||||
let st = unsafeIndex v i
|
||||
st' = insert' kx (s+bitsPerSubkey) x st
|
||||
v' = {-# SCC "i-Bitmap-update" #-}
|
||||
unsafeUpdate v (singleton (i, st'))
|
||||
in BitmapIndexed b v'
|
||||
Full v -> {-# SCC "i-Full" #-}
|
||||
let i = subkey kx s
|
||||
st = unsafeIndex v i
|
||||
st' = insert' kx (s+bitsPerSubkey) x st
|
||||
v' = {-# SCC "i-Full-update" #-}
|
||||
unsafeUpdate v (singleton (i, st'))
|
||||
in Full v'
|
||||
|
||||
-- lazy, but that's not necessarily a bad thing
|
||||
fromList :: [(Key, a)] -> HAMT a
|
||||
fromList = foldl (flip $ uncurry insert) empty
|
|
@ -0,0 +1,216 @@
|
|||
module HigherOrderNested where
|
||||
|
||||
{- Start with a standard data type
|
||||
data Nat = Zero
|
||||
| Succ Nat
|
||||
deriving (Eq, Show)
|
||||
-}
|
||||
|
||||
-- Decompose it into separate types
|
||||
data Zero = NZero
|
||||
deriving (Eq, Show)
|
||||
|
||||
data Succ nat = Succ nat
|
||||
deriving (Eq, Show)
|
||||
|
||||
-- And define a nested combining type
|
||||
data Nats nat = NNil
|
||||
| NCons nat (Nats (Succ nat))
|
||||
deriving (Eq, Show)
|
||||
|
||||
{- Some examples of instances of this type:
|
||||
NCons NZero NNil
|
||||
NCons NZero (NCons (Succ NZero) NNil)
|
||||
NCons NZero (NCons (Succ NZero) (NCons (Succ (Succ NZero)) NNil))
|
||||
-}
|
||||
|
||||
{- The Stack type, analogous to Nat
|
||||
data Stack a = Empty
|
||||
| Push a (Stack a)
|
||||
deriving (Eq, Show)
|
||||
-}
|
||||
|
||||
-- Decompose to separate types
|
||||
data Empty a = Empty
|
||||
deriving (Eq, Show)
|
||||
|
||||
data Push stack a = Push a (stack a)
|
||||
deriving (Eq, Show)
|
||||
|
||||
-- Define a nested combining type
|
||||
data Stacks stack a = SNil
|
||||
| SCons (stack a) (Stacks (Push stack) a)
|
||||
deriving (Eq, Show)
|
||||
|
||||
{- Some examples:
|
||||
SCons Empty SNil
|
||||
SCons Empty (SCons (Push 'a' Empty) SNil)
|
||||
SCons Empty (SCons (Push 'a' Empty) (SCons (Push 'a' (Push 'b' Empty)) SNil))
|
||||
-}
|
||||
|
||||
{- Perfect Binary Leaf Trees
|
||||
data Bush a = Leaf a
|
||||
| Fork (Bush a) (Bush a)
|
||||
deriving (Eq, Show)
|
||||
-}
|
||||
|
||||
-- Decomposed Perfect Binary Leaf Trees
|
||||
data Leaf a = Leaf a
|
||||
deriving (Eq, Show)
|
||||
data Fork bush a = Fork (bush a) (bush a)
|
||||
deriving (Eq, Show)
|
||||
|
||||
{- Uses a zeroless 1-2 representation to eliminate overhead of numerical
|
||||
nodes with no data.
|
||||
|
||||
Counting: 1, 2, 11, 21, 12, 22, 111, 211, 121, 221, 112, 212, 122, 222
|
||||
|
||||
Note that only the first One constructor can directly store the
|
||||
Leaf type; all others will use Fork^n Leaf, which guarantees that
|
||||
our "Perfect" invariant holds.
|
||||
|
||||
Each recursive instantiation of the type occurs with another level
|
||||
of Fork wrapping the bush type; One uses that level directly, while
|
||||
Two adds an extra Fork level to it.
|
||||
-}
|
||||
data RandomAccessList bush a
|
||||
= Nil
|
||||
| One (bush a) (RandomAccessList (Fork bush) a)
|
||||
| Two (Fork bush a) (RandomAccessList (Fork bush) a)
|
||||
deriving (Eq, Show)
|
||||
|
||||
type IxSequence = RandomAccessList Leaf
|
||||
|
||||
-- Consing to the front increments the number with a Leaf as data
|
||||
cons :: a -> IxSequence a -> IxSequence a
|
||||
cons a = incr (Leaf a)
|
||||
|
||||
incr :: bush a
|
||||
-> RandomAccessList bush a
|
||||
-> RandomAccessList bush a
|
||||
incr b Nil = One b Nil -- inc 0 = 1
|
||||
incr b1 (One b2 ds) = Two (Fork b1 b2) ds -- inc 1.. = 2..
|
||||
incr b1 (Two b2 ds) = One b1 (incr b2 ds) -- inc 2d.. = 1(inc d)..
|
||||
|
||||
-- This is used to eliminate leading zeros
|
||||
zero :: RandomAccessList (Fork bush) a
|
||||
-> RandomAccessList bush a
|
||||
zero Nil = Nil -- 0 = 0
|
||||
zero (One b ds) = Two b (zero ds) -- 01.. = 20.
|
||||
zero (Two (Fork b1 b2) ds) = Two b1 (One b2 ds) -- 02.. = 21.
|
||||
|
||||
-- Removing from the front decrements the number and removes a Leaf
|
||||
front :: IxSequence a -> (a, IxSequence a)
|
||||
front Nil = error "IxSequence empty"
|
||||
front (One (Leaf a) ds) = (a, zero ds) -- dec 1.. = 0..
|
||||
front (Two (Fork (Leaf a) b) ts) = (a, One b ts) -- dec 2.. = 1..
|
||||
|
||||
fromList :: [a] -> IxSequence a
|
||||
fromList = foldr cons Nil
|
||||
|
||||
{- A recursive (top-down) solution
|
||||
unleaf :: Leaf a -> [a]
|
||||
unleaf (Leaf a) = [a]
|
||||
|
||||
unfork :: (bush a -> [a]) -> Fork bush a -> [a]
|
||||
unfork flatten (Fork l r) = flatten l ++ flatten r
|
||||
|
||||
listify :: (bush a -> [a]) -> RandomAccessList bush a -> [a]
|
||||
listify _ Nil = []
|
||||
listify flatten (One b ds) = flatten b ++ listify (unfork flatten) ds
|
||||
listify flatten (Two b ds) = unfork flatten b ++ listify (unfork flatten) ds
|
||||
|
||||
toList :: IxSequence a -> [a]
|
||||
toList = listify unleaf
|
||||
-}
|
||||
|
||||
{- A recursive (top-down) solution with Type Classes
|
||||
class Flatten bush where
|
||||
flatten :: bush a -> [a]
|
||||
|
||||
instance Flatten Leaf where
|
||||
flatten (Leaf a) = [a]
|
||||
|
||||
instance (Flatten bush) => Flatten (Fork bush) where
|
||||
flatten (Fork l r) = flatten l ++ flatten r
|
||||
|
||||
listify :: (Flatten bush) => RandomAccessList bush a -> [a]
|
||||
listify Nil = []
|
||||
listify (One b ds) = flatten b ++ listify ds
|
||||
listify (Two b ds) = flatten b ++ listify ds
|
||||
|
||||
toList :: IxSequence a -> [a]
|
||||
toList = listify
|
||||
-}
|
||||
|
||||
{- An iterative (bottom-up) solution; linear time bound -}
|
||||
listify :: RandomAccessList bush a -> [bush a]
|
||||
listify Nil = []
|
||||
listify (One b ds) = b : unforks (listify ds)
|
||||
listify (Two b ds) = unforks (b : listify ds)
|
||||
|
||||
unforks :: [Fork bush a] -> [bush a]
|
||||
unforks [] = []
|
||||
unforks (Fork b1 b2 : ts) = b1 : b2 : unforks ts
|
||||
|
||||
toList :: IxSequence a -> [a]
|
||||
toList s = [a | Leaf a <- listify s]
|
||||
|
||||
{- Examples:
|
||||
|
||||
> fromList[1..5]
|
||||
One (Leaf 1)
|
||||
(Two (Fork (Fork (Leaf 2) (Leaf 3))
|
||||
(Fork (Leaf 4) (Leaf 5)))
|
||||
Nil)
|
||||
|
||||
12 = 1*1 + 2*2 = 1 + 4 = 5
|
||||
|
||||
> fromList [1..20]
|
||||
Two (Fork (Leaf 1) (Leaf 2)) -- 0, 1
|
||||
(One (Fork (Leaf 3) (Leaf 4)) -- 2, 3
|
||||
(Two (Fork (Fork (Fork (Leaf 5) (Leaf 6)) -- 4, 11
|
||||
(Fork (Leaf 7) (Leaf 8)))
|
||||
(Fork (Fork (Leaf 9) (Leaf 10))
|
||||
(Fork (Leaf 11) (Leaf 12))))
|
||||
(One (Fork (Fork (Fork (Leaf 13) (Leaf 14)) -- 12, 19
|
||||
(Fork (Leaf 15) (Leaf 16)))
|
||||
(Fork (Fork (Leaf 17) (Leaf 18))
|
||||
(Fork (Leaf 19) (Leaf 20))))
|
||||
Nil)))
|
||||
|
||||
2121 = 2*1 + 1*2 + 2*4 + 1*8 = 2 + 2 + 8 + 8 = 20
|
||||
|
||||
tree size at each rank is d*2^r
|
||||
|
||||
-}
|
||||
|
||||
{-
|
||||
Searching:
|
||||
|
||||
lookup 0 (One (Leaf x) _) = x
|
||||
lookup 0 (One (Fork t1 t2) ds) = lookup 0 (One )
|
||||
|
||||
-}
|
||||
|
||||
class FindB bush where
|
||||
findB :: Int -> Int -> bush a -> a
|
||||
instance FindB Leaf where
|
||||
findB _ _ (Leaf x) = x
|
||||
instance (FindB bush) => FindB (Fork bush) where
|
||||
findB i s (Fork lb rb)
|
||||
| i < s`div`2 = findB i (s`div`2) lb
|
||||
| otherwise = findB i (s`div`2) rb
|
||||
|
||||
find :: Int -> IxSequence a -> a
|
||||
find = find' 0
|
||||
|
||||
find' :: (FindB bush) => Int -> Int
|
||||
-> RandomAccessList bush a -> a
|
||||
find' _ _ Nil = error "Not found"
|
||||
find' r i (One b ds)
|
||||
| i < 2^r = findB i (2^r) b
|
||||
| otherwise = find' (i-2^r) (r+1) ds
|
||||
find' r i (Two b ds)
|
||||
| i < 2*2^r = findB i (2*2^r) b
|
||||
| otherwise = find' (i-2*2^r) (r+1) ds
|
|
@ -0,0 +1,31 @@
|
|||
module Nested where
|
||||
|
||||
data Fork t = Fork t t
|
||||
deriving (Show, Eq)
|
||||
|
||||
data RandList t = Nil
|
||||
| Zero (RandList (Fork t))
|
||||
| One t (RandList (Fork t))
|
||||
deriving (Show, Eq)
|
||||
|
||||
cons :: a -> RandList a -> RandList a
|
||||
cons x Nil = One x Nil
|
||||
cons x1 (Zero ds) = One x1 ds
|
||||
cons x1 (One x2 ds) = Zero (cons (Fork x1 x2) ds)
|
||||
|
||||
front :: RandList a -> (a, RandList a)
|
||||
front Nil = error "Empty RandList"
|
||||
front (One x Nil) = (x, Nil)
|
||||
front (One x ds) = (x, Zero ds)
|
||||
front (Zero ds) = (x1, One x2 ds')
|
||||
where (Fork x1 x2, ds') = front ds
|
||||
|
||||
find :: Int -> RandList a -> a
|
||||
find 0 Nil = error "Not found"
|
||||
find 0 (One x _) = x
|
||||
find i (One _ ds) = find (i-1) (Zero ds)
|
||||
find i (Zero ds) = if i`mod`2 == 0 then x else y
|
||||
where (Fork x y) = find (i`div`2) ds
|
||||
|
||||
fromList :: [a] -> RandList a
|
||||
fromList = foldr cons Nil
|
|
@ -0,0 +1,22 @@
|
|||
module Queue1 where
|
||||
|
||||
import StrictList as L
|
||||
|
||||
data Queue a = Q { left :: StrictList a
|
||||
, leftLen :: !Int
|
||||
, right :: StrictList a
|
||||
, rightLen :: !Int
|
||||
} deriving (Show, Eq)
|
||||
|
||||
empty :: Queue a
|
||||
empty = Q Empty 0 Empty 0
|
||||
|
||||
length :: Queue a -> Int
|
||||
length (Q _ ll _ rl) = ll + rl
|
||||
|
||||
insert :: a -> Queue a -> Queue a
|
||||
insert e (Q l ll r rl) = Q l ll (e :$ r) (rl + 1)
|
||||
|
||||
remove :: Queue a -> (a, Queue a)
|
||||
remove (Q Empty _ r rl) = remove (Q (L.reverse r) rl Empty 0)
|
||||
remove (Q l ll r rl) = (L.head l, Q (L.tail l) (ll - 1) r rl)
|
|
@ -0,0 +1,33 @@
|
|||
module Queue2 where
|
||||
|
||||
import Prelude hiding (length)
|
||||
|
||||
-- Invariant: |R| <= |L|
|
||||
-- Invariant is preserved via the makeQ function
|
||||
|
||||
data Queue a = Q { left :: [a]
|
||||
, leftLen :: !Int
|
||||
, right :: [a]
|
||||
, rightLen :: !Int
|
||||
} deriving (Show, Eq)
|
||||
|
||||
empty :: Queue a
|
||||
empty = Q [] 0 [] 0
|
||||
|
||||
length :: Queue a -> Int
|
||||
length (Q _ ll _ rl) = ll + rl
|
||||
|
||||
insert :: a -> Queue a -> Queue a
|
||||
insert e (Q l ll r rl) = makeQ (Q l ll (e : r) (rl + 1))
|
||||
|
||||
remove :: Queue a -> (a, Queue a)
|
||||
remove (Q l ll r rl) = (head l, makeQ (Q (tail l) (ll - 1) r rl))
|
||||
|
||||
makeQ :: Queue a -> Queue a
|
||||
makeQ q@(Q l ll r rl)
|
||||
| rl <= ll = q
|
||||
| otherwise = Q (rot l r []) (ll + rl) [] 0
|
||||
|
||||
rot :: [a] -> [a] -> [a] -> [a]
|
||||
rot [] r a = head r : a
|
||||
rot l r a = head l : rot (tail l) (tail r) (head r : a)
|
|
@ -0,0 +1,55 @@
|
|||
--Load Queue2.hs - lazy rebuilding queue
|
||||
:l Queue2.hs
|
||||
|
||||
--Start ghc-vis
|
||||
:vis
|
||||
|
||||
let x = empty
|
||||
:view x
|
||||
|
||||
--Insert a value - view new queue; we already triggered the reverse
|
||||
let y = insert 1 x
|
||||
:view y
|
||||
|
||||
--Remove the value - forces the evaluation in y, but we discard the new tree
|
||||
let (z,_) = remove y
|
||||
print z
|
||||
:update
|
||||
|
||||
--Add another element to y; now there's one in the right list
|
||||
let a = insert 2 y
|
||||
:view a
|
||||
|
||||
--Add one more, and we trigger the swap again
|
||||
let b = insert 3 a
|
||||
:view b
|
||||
|
||||
--We can add 3 more and still not swap
|
||||
let c = insert 6 $ insert 5 $ insert 4 b
|
||||
:view c
|
||||
|
||||
--One more, and now we trigger the swap
|
||||
let d = insert 7 c
|
||||
:view d
|
||||
|
||||
--Let's remove one by one and see how evaluation progresses
|
||||
let (e,f) = remove d
|
||||
print e
|
||||
:view f
|
||||
|
||||
let (g,h) = remove f
|
||||
print g
|
||||
:view h
|
||||
|
||||
let (i,j) = remove h
|
||||
print i
|
||||
:view j
|
||||
|
||||
let (k,l) = remove j
|
||||
print k
|
||||
:view l
|
||||
|
||||
let (m,n) = remove l
|
||||
print m
|
||||
:view n
|
||||
|
|
@ -0,0 +1,81 @@
|
|||
module RedBlack1 where
|
||||
|
||||
{- Version 1, 'untyped' -}
|
||||
data Color = R | B deriving Show
|
||||
data RB a = E | T Color (RB a) a (RB a) deriving Show
|
||||
|
||||
{- Insertion and membership test as by Okasaki -}
|
||||
insert :: Ord a => a -> RB a -> RB a
|
||||
insert x s =
|
||||
T B a z b
|
||||
where
|
||||
T _ a z b = ins s
|
||||
ins E = T R E x E
|
||||
ins s'@(T B a' y b')
|
||||
| x<y = balance (ins a') y b'
|
||||
| x>y = balance a' y (ins b')
|
||||
| otherwise = s'
|
||||
ins s'@(T R a' y b')
|
||||
| x<y = T R (ins a') y b'
|
||||
| x>y = T R a' y (ins b')
|
||||
| otherwise = s'
|
||||
|
||||
member :: Ord a => a -> RB a -> Bool
|
||||
member _ E = False
|
||||
member x (T _ a y b)
|
||||
| x < y = member x a
|
||||
| x > y = member x b
|
||||
| otherwise = True
|
||||
|
||||
{- balance: first equation is new,
|
||||
to make it work with a weaker invariant -}
|
||||
balance :: RB a -> a -> RB a -> RB a
|
||||
balance (T R a x b) y (T R c z d) = T R (T B a x b) y (T B c z d)
|
||||
balance (T R (T R a x b) y c) z d = T R (T B a x b) y (T B c z d)
|
||||
balance (T R a x (T R b y c)) z d = T R (T B a x b) y (T B c z d)
|
||||
balance a x (T R b y (T R c z d)) = T R (T B a x b) y (T B c z d)
|
||||
balance a x (T R (T R b y c) z d) = T R (T B a x b) y (T B c z d)
|
||||
balance a x b = T B a x b
|
||||
|
||||
{- deletion a la SMK -}
|
||||
delete :: Ord a => a -> RB a -> RB a
|
||||
delete x t =
|
||||
case del t of {T _ a y b -> T B a y b; _ -> E}
|
||||
where
|
||||
del E = E
|
||||
del (T _ a y b)
|
||||
| x<y = delformLeft a y b
|
||||
| x>y = delformRight a y b
|
||||
| otherwise = app a b
|
||||
delformLeft a@(T B _ _ _) y b = balleft (del a) y b
|
||||
delformLeft a y b = T R (del a) y b
|
||||
delformRight a y b@(T B _ _ _) = balright a y (del b)
|
||||
delformRight a y b = T R a y (del b)
|
||||
|
||||
balleft :: RB a -> a -> RB a -> RB a
|
||||
balleft (T R a x b) y c = T R (T B a x b) y c
|
||||
balleft bl x (T B a y b) = balance bl x (T R a y b)
|
||||
balleft bl x (T R (T B a y b) z c) = T R (T B bl x a) y (balance b z (sub1 c))
|
||||
|
||||
balright :: RB a -> a -> RB a -> RB a
|
||||
balright a x (T R b y c) = T R a x (T B b y c)
|
||||
balright (T B a x b) y bl = balance (T R a x b) y bl
|
||||
balright (T R a x (T B b y c)) z bl = T R (balance (sub1 a) x b) y (T B c z bl)
|
||||
|
||||
sub1 :: RB a -> RB a
|
||||
sub1 (T B a x b) = T R a x b
|
||||
sub1 _ = error "invariance violation"
|
||||
|
||||
app :: RB a -> RB a -> RB a
|
||||
app E x = x
|
||||
app x E = x
|
||||
app (T R a x b) (T R c y d) =
|
||||
case app b c of
|
||||
T R b' z c' -> T R(T R a x b') z (T R c' y d)
|
||||
bc -> T R a x (T R bc y d)
|
||||
app (T B a x b) (T B c y d) =
|
||||
case app b c of
|
||||
T R b' z c' -> T R(T B a x b') z (T B c' y d)
|
||||
bc -> balleft a x (T B bc y d)
|
||||
app a (T R b x c) = T R (app a b) x c
|
||||
app (T R a x b) c = T R a x (app b c)
|
|
@ -0,0 +1,179 @@
|
|||
{-# LANGUAGE FlexibleContexts #-}
|
||||
{-# LANGUAGE FlexibleInstances #-}
|
||||
{-# LANGUAGE UndecidableInstances #-}
|
||||
|
||||
module RedBlack2 where
|
||||
|
||||
data Unit a = E deriving Show
|
||||
type Tr t a = (t a,a,t a)
|
||||
data Red t a = C (t a) | R (Tr t a)
|
||||
|
||||
instance (Show (t a), Show a) => Show (Red t a)
|
||||
where showsPrec _ (C t) = shows t
|
||||
showsPrec _ (R(a,b,c)) =
|
||||
("R("++) . shows a . (","++) . shows b . (","++) . shows c . (")"++)
|
||||
|
||||
data AddLayer t a = B(Tr(Red t) a) deriving Show
|
||||
|
||||
data RB t a = Base (t a) | Next (RB (AddLayer t) a)
|
||||
|
||||
instance (Show (t a),Show a) => Show (RB t a)
|
||||
where
|
||||
show (Base t) = show t
|
||||
show (Next t) = show t
|
||||
|
||||
type Tree a = RB Unit a
|
||||
empty :: Tree a
|
||||
empty = Base E
|
||||
|
||||
type RR t a = Red (Red t) a
|
||||
type RL t a = Red (AddLayer t) a
|
||||
|
||||
member :: Ord a => a -> Tree a -> Bool
|
||||
member x t = rbmember x t (const False)
|
||||
|
||||
rbmember :: Ord a => a -> RB t a -> (t a->Bool) -> Bool
|
||||
rbmember _ (Base t) m = m t
|
||||
rbmember x (Next u) m = rbmember x u (bmem x m)
|
||||
|
||||
bmem :: Ord a => a -> (t a->Bool) -> AddLayer t a -> Bool
|
||||
bmem x m (B(l,y,r))
|
||||
| x<y = rmem x m l
|
||||
| x>y = rmem x m r
|
||||
| otherwise = True
|
||||
|
||||
rmem :: Ord a => a -> (t a->Bool) -> Red t a->Bool
|
||||
rmem _ m (C t) = m t
|
||||
rmem x m (R(l,y,r))
|
||||
| x<y = m l
|
||||
| x>y = m r
|
||||
| otherwise = True
|
||||
|
||||
insert :: Ord a => a -> Tree a -> Tree a
|
||||
insert = rbinsert
|
||||
|
||||
class Insertion t where ins :: Ord a => a -> t a -> Red t a
|
||||
instance Insertion Unit where ins x E = R(E,x,E)
|
||||
|
||||
rbinsert :: (Ord a,Insertion t) => a -> RB t a -> RB t a
|
||||
rbinsert x (Next t) = Next (rbinsert x t)
|
||||
rbinsert x (Base t) = blacken(ins x t)
|
||||
|
||||
blacken :: Red t a -> RB t a
|
||||
blacken (C u) = Base u
|
||||
blacken (R(a,x,b)) = Next(Base(B(C a,x,C b)))
|
||||
|
||||
balanceL :: RR t a -> a -> Red t a -> RL t a
|
||||
balanceL (R(R(a,x,b),y,c)) z d = R(B(C a,x,C b),y,B(c,z,d))
|
||||
balanceL (R(a,x,R(b,y,c))) z d = R(B(a,x,C b),y,B(C c,z,d))
|
||||
balanceL (R(C a,x,C b)) z d = C(B(R(a,x,b),z,d))
|
||||
balanceL (C a) x b = C(B(a,x,b))
|
||||
|
||||
balanceR :: Red t a -> a -> RR t a -> RL t a
|
||||
balanceR a x (R(R(b,y,c),z,d)) = R(B(a,x,C b),y,B(C c,z,d))
|
||||
balanceR a x (R(b,y,R(c,z,d))) = R(B(a,x,b),y,B(C c,z,C d))
|
||||
balanceR a x (R(C b,y,C c)) = C(B(a,x,R(b,y,c)))
|
||||
balanceR a x (C b) = C(B(a,x,b))
|
||||
|
||||
instance Insertion t => Insertion (AddLayer t) where
|
||||
ins x t@(B(l,y,r))
|
||||
| x<y = balance(ins x l) y (C r)
|
||||
| x>y = balance(C l) y (ins x r)
|
||||
| otherwise = C t
|
||||
instance Insertion t => Insertion (Red t) where
|
||||
ins x (C t) = C(ins x t)
|
||||
ins x t@(R(a,y,b))
|
||||
| x<y = R(ins x a,y,C b)
|
||||
| x>y = R(C a,y,ins x b)
|
||||
| otherwise = C t
|
||||
|
||||
balance :: RR t a -> a -> RR t a -> RL t a
|
||||
balance (R a) y (R b) = R(B a,y,B b)
|
||||
balance (C a) x b = balanceR a x b
|
||||
balance a x (C b) = balanceL a x b
|
||||
|
||||
class Append t where app :: t a -> t a -> Red t a
|
||||
|
||||
instance Append Unit where app _ _ = C E
|
||||
|
||||
instance Append t => Append (AddLayer t) where
|
||||
app (B(a,x,b)) (B(c,y,d)) = threeformB a x (appRed b c) y d
|
||||
|
||||
threeformB :: Red t a -> a -> RR t a -> a -> Red t a -> RL t a
|
||||
threeformB a x (R(b,y,c)) z d = R(B(a,x,b),y,B(c,z,d))
|
||||
threeformB a x (C b) y c = balleftB (C a) x (B(b,y,c))
|
||||
|
||||
appRed :: Append t => Red t a -> Red t a -> RR t a
|
||||
appRed (C x) (C y) = C(app x y)
|
||||
appRed (C t) (R(a,x,b)) = R(app t a,x,C b)
|
||||
appRed (R(a,x,b)) (C t) = R(C a,x,app b t)
|
||||
appRed (R(a,x,b))(R(c,y,d)) = threeformR a x (app b c) y d
|
||||
|
||||
threeformR:: t a -> a -> Red t a -> a -> t a -> RR t a
|
||||
threeformR a x (R(b,y,c)) z d = R(R(a,x,b),y,R(c,z,d))
|
||||
threeformR a x (C b) y c = R(R(a,x,b),y,C c)
|
||||
|
||||
balleft :: RR t a -> a -> RL t a -> RR (AddLayer t) a
|
||||
balleft (R a) y c = R(C(B a),y,c)
|
||||
balleft (C t) x (R(B(a,y,b),z,c)) = R(C(B(t,x,a)),y,balleftB (C b) z c)
|
||||
balleft b x (C t) = C (balleftB b x t)
|
||||
|
||||
balleftB :: RR t a -> a -> AddLayer t a -> RL t a
|
||||
balleftB bl x (B y) = balance bl x (R y)
|
||||
|
||||
balright :: RL t a -> a -> RR t a -> RR (AddLayer t) a
|
||||
balright a x (R b) = R(a,x,C(B b))
|
||||
balright (R(a,x,B(b,y,c))) z (C d) = R(balrightB a x (C b),y,C(B(c,z,d)))
|
||||
balright (C t) x b = C (balrightB t x b)
|
||||
|
||||
balrightB :: AddLayer t a -> a -> RR t a -> RL t a
|
||||
balrightB (B y) = balance (R y)
|
||||
|
||||
class Append t => DelRed t where
|
||||
delTup :: Ord a => a -> Tr t a -> Red t a
|
||||
delLeft :: Ord a => a -> t a -> a -> Red t a -> RR t a
|
||||
delRight :: Ord a => a -> Red t a -> a -> t a -> RR t a
|
||||
|
||||
class Append t => Del t where
|
||||
del :: Ord a => a -> AddLayer t a -> RR t a
|
||||
|
||||
class (DelRed t, Del t) => Deletion t
|
||||
|
||||
instance DelRed Unit where
|
||||
delTup z t@(_,x,_) = if x==z then C E else R t
|
||||
delLeft _ _ y b = R(C E,y,b)
|
||||
delRight _ a y _ = R(a,y,C E)
|
||||
|
||||
instance Deletion t => DelRed (AddLayer t) where
|
||||
delTup z (a,x,b)
|
||||
| z<x = balleftB (del z a) x b
|
||||
| z>x = balrightB a x (del z b)
|
||||
| otherwise = app a b
|
||||
delLeft x a = balleft (del x a)
|
||||
delRight x a y b = balright a y (del x b)
|
||||
|
||||
instance DelRed t => Del t where
|
||||
del z (B(a,x,b))
|
||||
| z<x = delformLeft a
|
||||
| z>x = delformRight b
|
||||
| otherwise = appRed a b
|
||||
where delformLeft(C t) = delLeft z t x b
|
||||
delformLeft(R t) = R(delTup z t,x,b)
|
||||
delformRight(C t) = delRight z a x t
|
||||
delformRight(R t) = R(a,x,delTup z t)
|
||||
|
||||
instance Deletion t => Deletion (AddLayer t)
|
||||
instance Deletion Unit
|
||||
|
||||
rbdelete :: (Ord a,Deletion t) => a -> RB (AddLayer t) a -> RB t a
|
||||
rbdelete x (Next t) = Next (rbdelete x t)
|
||||
rbdelete x (Base t) = blacken2 (del x t)
|
||||
|
||||
blacken2 :: RR t a -> RB t a
|
||||
blacken2 (C(C t)) = Base t
|
||||
blacken2 (C(R(a,x,b))) = Next(Base(B(C a,x,C b)))
|
||||
blacken2 (R p) = Next(Base(B p))
|
||||
|
||||
delete:: Ord a => a -> Tree a -> Tree a
|
||||
delete x (Next u) = rbdelete x u
|
||||
delete _ _ = empty
|
|
@ -0,0 +1,204 @@
|
|||
{-# LANGUAGE ExistentialQuantification #-}
|
||||
{-# LANGUAGE FlexibleContexts #-}
|
||||
{-# LANGUAGE RankNTypes #-}
|
||||
|
||||
module RedBlack3 where
|
||||
|
||||
type Tr t a b = (t a b, a, t a b)
|
||||
data Red t a b = C (t a b) | R (Tr t a b)
|
||||
data Black a b = E | B (Tr (Red Black) a [b])
|
||||
|
||||
instance Show a => Show (Black a b) where
|
||||
showsPrec _ E = ('E':)
|
||||
showsPrec _ (B (a, x, b)) = ("B(" ++) . showRed a . ("," ++) . shows x .
|
||||
("," ++) . showRed b . (")" ++)
|
||||
|
||||
showRed :: forall t a b. (Show (t a b), Show a)
|
||||
=> Red t a b
|
||||
-> ShowS
|
||||
showRed (C x) = shows x
|
||||
showRed (R (a, x, b)) = ("R(" ++) . shows a . ("," ++) . shows x . ("," ++) .
|
||||
shows b . (")" ++)
|
||||
|
||||
type RR a b = Red (Red Black) a b
|
||||
|
||||
inc :: Black a b
|
||||
-> Black a [b]
|
||||
inc = tickB
|
||||
|
||||
{- tickB is the identity,
|
||||
but it allows us to replace that bogus type variable -}
|
||||
|
||||
tickB :: Black a b
|
||||
-> Black a c
|
||||
tickB E = E
|
||||
tickB (B (a, x, b)) = B (tickR a, x, tickR b)
|
||||
|
||||
tickR :: Red Black a b
|
||||
-> Red Black a c
|
||||
tickR (C t) = C (tickB t)
|
||||
tickR (R (a, x, b)) = R (tickB a, x, tickB b)
|
||||
|
||||
data Tree a = forall b . ENC (Black a b)
|
||||
|
||||
instance Show a => Show (Tree a)
|
||||
where show (ENC t) = show t
|
||||
|
||||
empty :: Tree a
|
||||
empty = ENC E
|
||||
|
||||
insert :: Ord a
|
||||
=> a
|
||||
-> Tree a
|
||||
-> Tree a
|
||||
insert x (ENC t) = ENC (blacken (insB x t))
|
||||
|
||||
blacken :: Red Black a b
|
||||
-> Black a b
|
||||
blacken (C u) = u
|
||||
blacken (R (a, x, b)) = B (C (inc a), x, C (inc b))
|
||||
|
||||
insB :: Ord a
|
||||
=> a
|
||||
-> Black a b
|
||||
-> Red Black a b
|
||||
insB x E = R (E, x, E)
|
||||
insB x t@(B (a, y, b))
|
||||
| x < y = balanceL (insR x a) y b
|
||||
| x > y = balanceR a y (insR x b)
|
||||
| otherwise = C t
|
||||
|
||||
insR :: Ord a
|
||||
=> a
|
||||
-> Red Black a b
|
||||
-> RR a b
|
||||
insR x (C t) = C (insB x t)
|
||||
insR x t@(R (a, y, b))
|
||||
| x < y = R (insB x a, y, C b)
|
||||
| x > y = R (C a, y, insB x b)
|
||||
| otherwise = C t
|
||||
|
||||
balanceL :: RR a [b]
|
||||
-> a
|
||||
-> Red Black a [b]
|
||||
-> Red Black a b
|
||||
balanceL (R (R (a, x, b), y, c)) z d = R (B (C a, x, C b), y, B (c, z, d))
|
||||
balanceL (R (a, x, R (b, y, c))) z d = R (B (a, x, C b), y, B (C c, z, d))
|
||||
balanceL (R (C a, x, C b)) z d = C (B (R (a, x, b), z, d))
|
||||
balanceL (C a) x b = C (B (a, x, b))
|
||||
|
||||
balanceR :: Red Black a [b]
|
||||
-> a
|
||||
-> RR a [b]
|
||||
-> Red Black a b
|
||||
balanceR a x (R (R (b, y, c), z, d)) = R (B (a, x, C b), y, B (C c, z, d))
|
||||
balanceR a x (R (b, y, R (c, z, d))) = R (B (a, x, b), y, B (C c, z, C d))
|
||||
balanceR a x (R (C b, y, C c)) = C (B (a, x, R (b, y, c)))
|
||||
balanceR a x (C b) = C (B (a, x, b))
|
||||
|
||||
delete :: Ord a
|
||||
=> a
|
||||
-> Tree a
|
||||
-> Tree a
|
||||
delete x (ENC t) =
|
||||
case delB x t of
|
||||
R p -> ENC (B p)
|
||||
C (R (a, x', b)) -> ENC (B (C a, x', C b))
|
||||
C (C q) -> ENC q
|
||||
|
||||
delB :: Ord a
|
||||
=> a
|
||||
-> Black a b
|
||||
-> RR a [b]
|
||||
delB _ E = C (C E)
|
||||
delB x (B (a, y, b))
|
||||
| x < y = delfromL a
|
||||
| x > y = delfromR b
|
||||
| otherwise = appendR a b
|
||||
where delfromL (R t) = R (delT x t, y, b)
|
||||
delfromL (C E) = R (C E, y, b)
|
||||
delfromL (C t) = balL (delB x t) y b
|
||||
delfromR (R t) = R (a, y, delT x t)
|
||||
delfromR (C E) = R (a, y, C E)
|
||||
delfromR (C t) = balR a y (delB x t)
|
||||
|
||||
delT :: Ord a
|
||||
=> a
|
||||
-> Tr Black a b
|
||||
-> Red Black a b
|
||||
delT x t@(a,y,b)
|
||||
| x < y = delfromL a
|
||||
| x > y = delfromR b
|
||||
| otherwise = append a b
|
||||
where delfromL (B _) = balLeB (delB x a) y b
|
||||
delfromL _ = R t
|
||||
delfromR (B _) = balRiB a y (delB x b)
|
||||
delfromR _ = R t
|
||||
|
||||
balLeB :: RR a [b]
|
||||
-> a
|
||||
-> Black a b
|
||||
-> Red Black a b
|
||||
balLeB bl x (B y) = balance bl x (R y)
|
||||
|
||||
balRiB :: Black a b
|
||||
-> a
|
||||
-> RR a [b]
|
||||
-> Red Black a b
|
||||
balRiB (B y) = balance (R y)
|
||||
|
||||
balL :: RR a [b]
|
||||
-> a
|
||||
-> Red Black a b
|
||||
-> RR a b
|
||||
balL (R a) y c = R (C (B a), y, c)
|
||||
balL (C t) x (R (B (a, y, b), z, c)) = R (C (B (t, x, a)), y, balLeB (C b) z c)
|
||||
balL b x (C t) = C (balLeB b x t)
|
||||
|
||||
balR :: Red Black a b
|
||||
-> a
|
||||
-> RR a [b]
|
||||
-> RR a b
|
||||
balR a x (R b) = R (a, x, C (B b))
|
||||
balR (R (a, x, B (b, y, c))) z (C d) = R (balRiB a x (C b), y, C (B (c, z, d)))
|
||||
balR (C t) x b = C (balRiB t x b)
|
||||
|
||||
balance :: RR a [b]
|
||||
-> a
|
||||
-> RR a [b]
|
||||
-> Red Black a b
|
||||
balance (R a) y (R b) = R (B a, y, B b)
|
||||
balance (C a) x b = balanceR a x b
|
||||
balance a x (C b) = balanceL a x b
|
||||
|
||||
append :: Black a b
|
||||
-> Black a b
|
||||
-> Red Black a b
|
||||
append (B (a, x, b)) (B (c, y, d)) = threeformB a x (appendR b c) y d
|
||||
append _ _ = C E
|
||||
|
||||
threeformB :: Red Black a [b]
|
||||
-> a
|
||||
-> RR a [b]
|
||||
-> a
|
||||
-> Red Black a [b]
|
||||
-> Red Black a b
|
||||
threeformB a x (R (b, y, c)) z d = R (B (a, x, b), y, B (c, z, d))
|
||||
threeformB a x (C b) y c = balLeB (C a) x (B (b, y, c))
|
||||
|
||||
appendR :: Red Black a b
|
||||
-> Red Black a b
|
||||
-> RR a b
|
||||
appendR (C x) (C y) = C (append x y)
|
||||
appendR (C t) (R (a, x, b)) = R (append t a, x, C b)
|
||||
appendR (R (a, x, b)) (C t) = R (C a, x, append b t)
|
||||
appendR (R (a, x, b)) (R (c, y, d)) = threeformR a x (append b c) y d
|
||||
|
||||
threeformR :: Black a b
|
||||
-> a
|
||||
-> Red Black a b
|
||||
-> a
|
||||
-> Black a b
|
||||
-> RR a b
|
||||
threeformR a x (R (b, y, c)) z d = R (R (a, x, b), y, R (c, z, d))
|
||||
threeformR a x (C b) y c = R (R (a, x, b), y, C c)
|
|
@ -0,0 +1,131 @@
|
|||
{-# LANGUAGE DataKinds #-}
|
||||
{-# LANGUAGE ExistentialQuantification #-}
|
||||
{-# LANGUAGE GADTs #-}
|
||||
{-# LANGUAGE KindSignatures #-}
|
||||
{-# LANGUAGE RankNTypes #-}
|
||||
{-# LANGUAGE StandaloneDeriving #-}
|
||||
|
||||
module RedBlackTree where
|
||||
|
||||
data Nat = Zero | Succ Nat deriving (Eq, Ord, Show)
|
||||
type One = Succ Zero
|
||||
|
||||
data RedBlack = Black | Red deriving (Eq, Ord, Show)
|
||||
|
||||
-- red-black trees are rooted at a black node
|
||||
data RedBlackTree a = forall n. T (Node Black n a)
|
||||
deriving instance Show a => Show (RedBlackTree a)
|
||||
|
||||
-- all paths from a node to a leaf have exactly n black nodes
|
||||
data Node :: RedBlack -> Nat -> * -> * where
|
||||
-- all leafs are black
|
||||
Leaf :: Node Black One a
|
||||
-- internal black nodes can have children of either color
|
||||
B :: Node cL n a -> a -> Node cR n a -> Node Black (Succ n) a
|
||||
-- internal red nodes can only have black children
|
||||
R :: Node Black n a -> a -> Node Black n a -> Node Red n a
|
||||
deriving instance Show a => Show (Node c n a)
|
||||
|
||||
-- one-hole context for red-black trees
|
||||
data Context :: Nat -> RedBlack -> Nat -> * -> * where
|
||||
-- if we're at the root, the hole is a black node
|
||||
Root :: Context n Black n a
|
||||
-- we can go left or right from a red node hole, creating a hole for a black node
|
||||
BC :: Bool -> a -> Node Black n a -> Context m Red n a -> Context m Black n a
|
||||
-- we can go left or right from a black node hole, creating a hole for either
|
||||
EC :: Bool -> a -> Node cY n a -> Context m Black (Succ n) a -> Context m cX n a
|
||||
|
||||
data Zipper m a = forall c n. Zipper (Node c n a) (Context m c n a)
|
||||
|
||||
-- create a zipper
|
||||
unZip :: Node Black n a -> Zipper n a
|
||||
unZip = flip Zipper Root
|
||||
|
||||
-- destroy a zipper
|
||||
zipUp :: Zipper m a -> Node Black m a
|
||||
zipUp (Zipper x Root) = x
|
||||
zipUp (Zipper x (BC goLeft a y c)) = zipUp $ Zipper (if goLeft then R x a y else R y a x) c
|
||||
zipUp (Zipper x (EC goLeft a y c)) = zipUp $ Zipper (if goLeft then B x a y else B y a x) c
|
||||
|
||||
-- locate the node that should contain a in the red-black tree
|
||||
zipTo :: Ord a => a -> Zipper n a -> Zipper n a
|
||||
zipTo _ z@(Zipper Leaf _) = z
|
||||
zipTo a z@(Zipper (R l a' r) c) = case compare a a' of
|
||||
EQ -> z
|
||||
LT -> zipTo a $ Zipper l (BC True a' r c)
|
||||
GT -> zipTo a $ Zipper r (BC False a' l c)
|
||||
zipTo a z@(Zipper (B l a' r) c) = case compare a a' of
|
||||
EQ -> z
|
||||
LT -> zipTo a $ Zipper l (EC True a' r c)
|
||||
GT -> zipTo a $ Zipper r (EC False a' l c)
|
||||
|
||||
-- create a red-black tree
|
||||
empty :: RedBlackTree a
|
||||
empty = T Leaf
|
||||
|
||||
-- insert a node into a red-black tree
|
||||
-- (see http://en.wikipedia.org/wiki/Red%E2%80%93black_tree#Insertion)
|
||||
insert :: Ord a => a -> RedBlackTree a -> RedBlackTree a
|
||||
insert a t@(T root) = case zipTo a (unZip root) of
|
||||
-- find matching leaf and replace with red node (pointing to two leaves)
|
||||
Zipper Leaf c -> insertAt (R Leaf a Leaf) c
|
||||
-- if it's already in the tree, there's no need to modify it
|
||||
_ -> t
|
||||
|
||||
insertAt :: Node Red n a -> Context m c n a -> RedBlackTree a
|
||||
-- 1) new node is root => paint it black and done
|
||||
insertAt (R l a r) Root = T $ B l a r
|
||||
-- 2) new node's parent is black => done
|
||||
insertAt x (EC b a y c) = T . zipUp $ Zipper x (EC b a y c)
|
||||
-- 3) uncle is red => paint parent/uncle black, g'parent red. recurse on g'parent
|
||||
insertAt x (BC pb pa py (EC gb ga (R ul ua ur) gc)) = insertAt g gc
|
||||
where p = if pb then B x pa py else B py pa x
|
||||
u = B ul ua ur
|
||||
g = if gb then R p ga u else R u ga p
|
||||
-- 4) node is between parent and g'parent => inner rotation
|
||||
insertAt (R l a r) (BC False pa py pc@(EC True _ _ _)) = insertAt (R py pa l) (BC True a r pc)
|
||||
insertAt (R l a r) (BC True pa py pc@(EC False _ _ _)) = insertAt (R r pa py) (BC False a l pc)
|
||||
-- 5) otherwise => outer rotation
|
||||
-- XXX: GHC seems unable to infer that gy is Black so I have to do both cases
|
||||
-- explicitly, rather than
|
||||
-- insertAt x (BC True pa py (EC True ga gy gc)) =
|
||||
-- T . zipUp $ Zipper (B x pa $ R py ga gy) gc
|
||||
-- insertAt x (BC False pa py (EC False ga gy gc)) =
|
||||
-- T . zipUp $ Zipper (B (R gy ga py) pa x) gc
|
||||
insertAt x (BC True pa py (EC True ga gy@Leaf gc)) =
|
||||
T . zipUp $ Zipper (B x pa $ R py ga gy) gc
|
||||
insertAt x (BC True pa py (EC True ga gy@B {} gc)) =
|
||||
T . zipUp $ Zipper (B x pa $ R py ga gy) gc
|
||||
insertAt x (BC False pa py (EC False ga gy@Leaf gc)) =
|
||||
T . zipUp $ Zipper (B (R gy ga py) pa x) gc
|
||||
insertAt x (BC False pa py (EC False ga gy@B {} gc)) =
|
||||
T . zipUp $ Zipper (B (R gy ga py) pa x) gc
|
||||
|
||||
-- can't derive, since we abstract over n, so we have to manually
|
||||
-- check for identical structure
|
||||
instance Eq a => Eq (RedBlackTree a) where
|
||||
T Leaf == T Leaf =
|
||||
True
|
||||
|
||||
T (B l@B {} a r@B {}) == T (B l'@B {} a' r'@B {}) =
|
||||
a == a' && T l == T l' && T r == T r'
|
||||
|
||||
T (B (R ll la lr) a r@B {}) == T (B (R ll' la' lr') a' r'@B {}) =
|
||||
a == a' && la == la' && T ll == T ll' && T lr == T lr' && T r == T r'
|
||||
|
||||
T (B l@B {} a (R rl ra rr)) == T (B l'@B {} a' (R rl' ra' rr')) =
|
||||
a == a' && ra == ra' && T l == T l' && T rl == T rl' && T rr == T rr'
|
||||
|
||||
T (B (R ll la lr) a (R rl ra rr)) == T (B (R ll' la' lr') a' (R rl' ra' rr')) =
|
||||
a == a' && la == la' && ra == ra' &&
|
||||
T ll == T ll' && T lr == T lr' && T rl == T rl' && T rr == T rr'
|
||||
_ == _ =
|
||||
False
|
||||
|
||||
-- can't derive, since B abstracts over child node colors, so
|
||||
-- manually check for identical structure
|
||||
instance Eq a => Eq (Node c n a) where
|
||||
Leaf == Leaf = True
|
||||
R l a r == R l' a' r' = a == a' && l == l' && r == r'
|
||||
b@B {} == b'@B {} = T b == T b'
|
||||
_ == _ = False
|
|
@ -0,0 +1,85 @@
|
|||
module RandList
|
||||
( RandList
|
||||
, empty
|
||||
, isEmpty
|
||||
, cons
|
||||
, head
|
||||
, tail
|
||||
, lookup
|
||||
, update
|
||||
) where
|
||||
|
||||
import Prelude hiding (head, lookup, tail)
|
||||
|
||||
data BLT a = Leaf a
|
||||
| Fork !Int (BLT a) (BLT a)
|
||||
deriving (Eq, Show)
|
||||
|
||||
data Digit a = Zero
|
||||
| One (BLT a)
|
||||
deriving (Eq, Show)
|
||||
|
||||
type RandList a = [Digit a]
|
||||
|
||||
empty :: RandList a
|
||||
empty = []
|
||||
|
||||
isEmpty :: RandList a -> Bool
|
||||
isEmpty = null
|
||||
|
||||
cons :: a -> RandList a -> RandList a
|
||||
cons x = insTree (Leaf x)
|
||||
|
||||
head :: RandList a -> a
|
||||
head ts = x where (Leaf x, _) = borrowTree ts
|
||||
|
||||
tail :: RandList a -> RandList a
|
||||
tail ts = ts' where (_, ts') = borrowTree ts
|
||||
|
||||
lookup :: RandList a -> Int -> a
|
||||
lookup [] _ = error "Bad Index"
|
||||
lookup (Zero : ts) i = lookup ts i
|
||||
lookup (One t : ts) i
|
||||
| i < size t = lookupTree t i
|
||||
| otherwise = lookup ts (i - size t)
|
||||
|
||||
update :: RandList a -> Int -> a -> RandList a
|
||||
update [] _ _ = error "Bad Index"
|
||||
update (Zero : ts) i y = Zero : update ts i y
|
||||
update (One t : ts) i y
|
||||
| i < size t = One (updateTree t i y) : ts
|
||||
| otherwise = One t : update ts (i - size t) y
|
||||
|
||||
-- Utility functions
|
||||
|
||||
size :: BLT a -> Int
|
||||
size (Leaf _) = 1
|
||||
size (Fork n _ _ ) = n
|
||||
|
||||
link :: BLT a -> BLT a -> BLT a
|
||||
link t1 t2 = Fork (size t1 + size t2) t1 t2
|
||||
|
||||
insTree :: BLT a -> RandList a -> RandList a
|
||||
insTree t [] = [One t]
|
||||
insTree t (Zero : ts) = One t : ts
|
||||
insTree t1 (One t2 : ts) = Zero : insTree (link t1 t2) ts
|
||||
|
||||
borrowTree :: RandList a -> (BLT a, RandList a)
|
||||
borrowTree [One t] = (t, [])
|
||||
borrowTree (One t : ts) = (t, Zero : ts)
|
||||
borrowTree (Zero : ts) = (t1, One t2 : ts')
|
||||
where (Fork _ t1 t2, ts') = borrowTree ts
|
||||
|
||||
lookupTree :: BLT a -> Int -> a
|
||||
lookupTree (Leaf x) 0 = x
|
||||
lookupTree (Leaf _) _ = error "Bad Index"
|
||||
lookupTree (Fork n t1 t2) i
|
||||
| i < (n `div` 2) = lookupTree t1 i
|
||||
| otherwise = lookupTree t2 (i - n `div` 2)
|
||||
|
||||
updateTree :: BLT a -> Int -> a -> BLT a
|
||||
updateTree (Leaf _) 0 y = Leaf y
|
||||
updateTree (Leaf _) _ _ = error "Bad Index"
|
||||
updateTree (Fork n t1 t2) i y
|
||||
| i < (n `div` 2) = Fork n (updateTree t1 i y) t2
|
||||
| otherwise = Fork n t1 (updateTree t2 (i - n `div` 2) y)
|
|
@ -0,0 +1,13 @@
|
|||
module SkewNat where
|
||||
|
||||
type SkewNat = [Int] -- increasing list of powers of 2^{k+1}-1
|
||||
|
||||
inc :: SkewNat -> SkewNat
|
||||
inc ws@(w1 : w2 : rest)
|
||||
| w1 == w2 = 1 + w1 + w2 : rest
|
||||
| otherwise = 1 : ws
|
||||
inc ws = 1 : ws
|
||||
|
||||
dec :: SkewNat -> SkewNat
|
||||
dec (1 : ws) = ws
|
||||
dec (w : ws) = (w `div` 2) : (w `div` 2) : ws
|
|
@ -0,0 +1,61 @@
|
|||
module SkewRandList
|
||||
( RList
|
||||
, cons
|
||||
, head
|
||||
, tail
|
||||
, lookup
|
||||
, update ) where
|
||||
|
||||
import Prelude hiding (head, lookup, tail)
|
||||
|
||||
data BTree a = Leaf a
|
||||
| Node a (BTree a) (BTree a)
|
||||
deriving (Show, Eq)
|
||||
|
||||
data Digit a = Digit !Int (BTree a)
|
||||
deriving (Show, Eq)
|
||||
|
||||
type RList a = [Digit a]
|
||||
|
||||
cons :: a -> RList a -> RList a
|
||||
cons x (Digit w1 t1 : Digit w2 t2 : ts')
|
||||
| w1 == w2 = Digit (1 + w1 + w2) (Node x t1 t2) : ts'
|
||||
cons x ts = Digit 1 (Leaf x) : ts
|
||||
|
||||
head :: RList a -> a
|
||||
head (Digit 1 (Leaf x) : _) = x
|
||||
head (Digit _ (Node x _ _) : _) = x
|
||||
|
||||
tail :: RList a -> RList a
|
||||
tail (Digit 1 (Leaf _) : ts) = ts
|
||||
tail (Digit w (Node _ t1 t2) : ts) =
|
||||
Digit w' t1 : Digit w' t2 : ts
|
||||
where w' = w `div` 2
|
||||
|
||||
lookup :: RList a -> Int -> a
|
||||
lookup (Digit w t : ts) i
|
||||
| i < w = lookupTree w t i
|
||||
| otherwise = lookup ts (i - w)
|
||||
|
||||
update :: RList a -> Int -> a -> RList a
|
||||
update (Digit w t : ts) i y
|
||||
| i < w = Digit w (updateTree w t i y) : ts
|
||||
| otherwise = Digit w t : update ts (i-w) y
|
||||
|
||||
lookupTree :: Int -> BTree a -> Int -> a
|
||||
lookupTree 1 (Leaf x) 0 = x
|
||||
lookupTree _ (Node x _ _) 0 = x
|
||||
lookupTree w (Node _ t1 t2) i
|
||||
| i < w' = lookupTree w' t1 (i-1)
|
||||
| otherwise = lookupTree w' t2 (i-1-w')
|
||||
where w' = w `div` 2
|
||||
|
||||
updateTree :: Int -> BTree a -> Int -> a -> BTree a
|
||||
updateTree 1 (Leaf _) 0 y = Leaf y
|
||||
updateTree _ (Node _ t1 t2) 0 y = Node y t1 t2
|
||||
updateTree w (Node x t1 t2) i y
|
||||
| i < (w`div`2) =
|
||||
Node x (updateTree w' t1 (i-1) y) t2
|
||||
| otherwise =
|
||||
Node x t1 (updateTree w' t2 (i-1-w') y)
|
||||
where w' = w `div` 2
|
|
@ -0,0 +1,28 @@
|
|||
module SparseNat where
|
||||
|
||||
type SparseNat = [Int] -- increasing list of powers of 2
|
||||
|
||||
carry :: Int -> SparseNat -> SparseNat
|
||||
carry w [] = [w]
|
||||
carry w ws@(w' : rest)
|
||||
| w < w' = w : ws
|
||||
| otherwise = carry (2 * w) rest
|
||||
|
||||
borrow :: Int -> SparseNat -> SparseNat
|
||||
borrow w ws@(w' : rest)
|
||||
| w < w' = rest
|
||||
| otherwise = w : borrow (2 * w) ws
|
||||
|
||||
inc :: SparseNat -> SparseNat
|
||||
inc = carry 1
|
||||
|
||||
dec :: SparseNat -> SparseNat
|
||||
dec = borrow 1
|
||||
|
||||
add :: SparseNat -> SparseNat -> SparseNat
|
||||
add ws [] = ws
|
||||
add [] ws = ws
|
||||
add m@(w1 : ws1) n@(w2 : ws2)
|
||||
| w1 < w2 = w1 : add ws1 n
|
||||
| w2 < w1 = w2 : add m ws2
|
||||
| otherwise = carry (2 * w1) (add ws1 ws2)
|
|
@ -0,0 +1,30 @@
|
|||
module StrictList (
|
||||
StrictList(..)
|
||||
, foldl
|
||||
, reverse
|
||||
, head
|
||||
, tail
|
||||
) where
|
||||
|
||||
import Prelude hiding (foldl, head, reverse, tail)
|
||||
|
||||
data StrictList a = !a :$ !(StrictList a) | Empty
|
||||
deriving (Show, Eq)
|
||||
|
||||
infixr 5 :$
|
||||
|
||||
foldl :: (b -> a -> b) -> b -> StrictList a -> b
|
||||
foldl f = lgo
|
||||
where lgo z Empty = z
|
||||
lgo z (x :$ xs) = let z' = f z x in z' `seq` lgo z' xs
|
||||
|
||||
reverse :: StrictList a -> StrictList a
|
||||
reverse = foldl (flip (:$)) Empty
|
||||
|
||||
head :: StrictList a -> a
|
||||
head (x :$ _ ) = x
|
||||
head Empty = error "Empty StrictList has no head"
|
||||
|
||||
tail :: StrictList a -> StrictList a
|
||||
tail (_ :$ xs) = xs
|
||||
tail Empty = error "Empty StrictList has no tail"
|
|
@ -0,0 +1,51 @@
|
|||
module Zipper where
|
||||
|
||||
data Tree a = Item a
|
||||
| Section [Tree a]
|
||||
deriving (Show, Eq)
|
||||
|
||||
data Path a = Top
|
||||
| Node [Tree a] (Path a) [Tree a]
|
||||
deriving (Show, Eq)
|
||||
|
||||
data Location a = Loc (Tree a) (Path a)
|
||||
deriving (Show, Eq)
|
||||
|
||||
goLeft :: Location a -> Location a
|
||||
goLeft (Loc _ Top) = error "Can't go left of top"
|
||||
goLeft (Loc t (Node (l:left) up right)) = Loc l (Node left up (t:right))
|
||||
goLeft (Loc _ (Node [] _ _)) = error "Can't go left of first"
|
||||
|
||||
goRight :: Location a -> Location a
|
||||
goRight (Loc _ Top) = error "Can't go right of top"
|
||||
goRight (Loc t (Node left up (r:right))) = Loc r (Node (t:left) up right)
|
||||
goRight _ = error "Can't go right of last"
|
||||
|
||||
goUp :: Location a -> Location a
|
||||
goUp (Loc _ Top) = error "Can't go up from top"
|
||||
goUp (Loc t (Node left up right)) = Loc (Section (reverse left ++ t:right)) up
|
||||
|
||||
goDown :: Location a -> Location a
|
||||
goDown (Loc (Item _) _) = error "Can't go down from item"
|
||||
goDown (Loc (Section (t1:trees)) p) = Loc t1 (Node [] p trees)
|
||||
|
||||
nth :: Location a -> Int -> Location a
|
||||
nth loc = go
|
||||
where go 1 = goDown loc
|
||||
go n | n > 0 = goRight (go (n-1))
|
||||
| otherwise = error "nth expects a positive int"
|
||||
|
||||
replace :: Location a -> Tree a -> Location a
|
||||
replace (Loc _ p) t = Loc t p
|
||||
|
||||
insertRight :: Location a -> Tree a -> Location a
|
||||
insertRight (Loc _ Top) _ = error "Can't insert right of top"
|
||||
insertRight (Loc t (Node left up right)) r = Loc t (Node left up (r:right))
|
||||
|
||||
insertLeft :: Location a -> Tree a -> Location a
|
||||
insertLeft (Loc _ Top) _ = error "Can't insert left of top"
|
||||
insertLeft (Loc t (Node left up right)) l = Loc t (Node (l:left) up right)
|
||||
|
||||
insertDown :: Location a -> Tree a -> Location a
|
||||
insertDown (Loc (Item _) _) _ = error "Can't insert down of an item"
|
||||
insertDown (Loc (Section sons) p) t1 = Loc t1 (Node [] p sons)
|
Loading…
Reference in New Issue