blue_pill_ui/cross/src/bin/ui_example.rs

129 lines
4.3 KiB
Rust

//! Blinks an LED
//!
//! This assumes that a LED is connected to pc13 as is the case on the blue pill board.
//!
//! Note: Without additional hardware, PC13 should not be used to drive an LED, see page 5.1.2 of
//! the reference manual for an explanation. This is not an issue on the blue pill.
#![deny(unsafe_code)]
#![no_std]
#![no_main]
use panic_rtt_target as _;
// RTIC requires that unused interrupts are declared in "dispatchers" when
// using software tasks; these free interrupts will be used to dispatch the
// software tasks.
//
// For a list, see:
// https://docs.rs/stm32f1xx-hal/0.6.1/stm32f1xx_hal/stm32/enum.Interrupt.html
#[rtic::app(device = stm32f1xx_hal::stm32, peripherals = true, dispatchers = [TAMPER])]
mod app {
use core::sync::atomic::{self, Ordering};
use rtt_target::{rprintln, rtt_init_print};
use stm32f1xx_hal::{
prelude::*,
stm32,
timer::{Event, Timer},
};
use stm32f1xx_hal as hal;
// Defining this struct makes shared resources available to tasks;
// they will be initialized by the values returned from `init` and
// will be wrapped in a `Mutex` and must be accessed via a closure
// passed to its `lock` method.
// If you annotate a field with #[lock_free] you can opt-out of the
// mutex but it may only be shared by tasks at the same priority.
#[shared]
struct Shared {}
// This struct defines local resources (accessed by only one task);
// they will be initialized by the values returned from `init` and
// can be accessed directly.
#[local]
struct Local {
led1: hal::gpio::gpioc::PC13<hal::gpio::Output<hal::gpio::PushPull>>,
tmr2: hal::timer::CountDownTimer<stm32::TIM2>,
tmr3: hal::timer::CountDownTimer<stm32::TIM3>,
}
// This task does startup config; the peripherals are passed in thanks to
// `peripherals = true` in the app definition. They are the `device` and
// `core` fields of `init::Context`.
#[init]
fn init(cx: init::Context) -> (Shared, Local, init::Monotonics) {
rtt_init_print!();
rprintln!("init begin");
// Set everything to 8MHz using the external clock
let mut flash = cx.device.FLASH.constrain();
let rcc = cx.device.RCC.constrain();
let clocks = rcc
.cfgr
.use_hse(8.mhz())
.sysclk(8.mhz())
.hclk(8.mhz())
.pclk1(8.mhz())
.pclk2(8.mhz())
.adcclk(8.mhz())
.freeze(&mut flash.acr);
// LED is on pin C13, configure it for output
let mut gpioc = cx.device.GPIOC.split();
let led1 = gpioc.pc13.into_push_pull_output(&mut gpioc.crh);
// Use TIM2 for the beat counter task
let mut tmr2 = Timer::tim2(cx.device.TIM2, &clocks).start_count_down(1.hz());
tmr2.listen(Event::Update);
// Use TIM3 for the LED blinker task
let mut tmr3 = Timer::tim3(cx.device.TIM3, &clocks).start_count_down(2.hz());
tmr3.listen(Event::Update);
rprintln!("init end");
(Shared {}, Local { led1, tmr2, tmr3 }, init::Monotonics())
}
#[idle]
fn idle(_: idle::Context) -> ! {
loop {
// The compiler may omit this loop without the following
atomic::compiler_fence(Ordering::SeqCst);
}
}
// Update the beat counter and periodically display the current count
// on the RTT channel
// Since `beat` is a local, we can have it initialized.
#[task(local = [beat: u32 = 0])]
fn beat_update(cx: beat_update::Context) {
if *cx.local.beat % 10 == 0 {
rprintln!("TIM2 beat = {}", *cx.local.beat);
}
*cx.local.beat += 1;
}
// Interrupt task for TIM2, the beat counter timer
#[task(binds = TIM2, priority = 2, local = [tmr2])]
fn tim2(cx: tim2::Context) {
// Delegate the state update to a software task
beat_update::spawn().unwrap();
// Restart the timer and clear the interrupt flag
cx.local.tmr2.start(1.hz());
cx.local.tmr2.clear_update_interrupt_flag();
}
// Interrupt task for TIM3, the LED blink timer
#[task(binds = TIM3, priority = 1, local = [led1, tmr3])]
fn tim3(cx: tim3::Context) {
cx.local.led1.toggle();
cx.local.tmr3.start(2.hz());
cx.local.tmr3.clear_update_interrupt_flag();
}
}