blue_pill_ui/cross/src/board.rs

297 lines
8.9 KiB
Rust

//! Hardware initialization and control wrappers
use stm32f1xx_hal as hal;
use hal::{
prelude::*,
stm32::{self, Peripherals},
timer::{Timer, Tim4NoRemap},
i2c::{BlockingI2c, DutyCycle, Mode},
qei::{Qei, QeiOptions},
};
// re-export some of the types from the HAL we're not wrapping
pub use hal::timer::{Event, CounterHz};
pub use stm32::{TIM2, TIM3};
use ssd1306::{prelude::*, I2CDisplayInterface, Ssd1306, mode::BufferedGraphicsMode};
// Imports for specifying the types of pins
// The Pin type takes 4 parameters; config, low/high register, bank name, and number
// E.g. Pin<Input<Floating>, CRL, 'A', 0> for PA0 in input mode with no pull resistor.
use hal::gpio::{Pin, Input, Output, Floating, PushPull, CRL, CRH, Alternate, OpenDrain};
//
// The Board peripheral collection
//
/// The managed peripherals for this Blue Pill project board
pub struct Board {
pub encoder: Encoder,
pub display: Display,
pub led: UserLed,
pub poll_timer: CounterHz<TIM2>,
pub blink_timer: CounterHz<TIM3>,
}
impl Board {
/// Set up clocks and pin mappings for peripherals on the board
///
/// This returns a plain struct containing all the managed
/// peripherals so that it can be destructured.
pub fn init(periphs: Peripherals) -> Self {
// Set up board clocks
let mut flash = periphs.FLASH.constrain();
let rcc = periphs.RCC.constrain();
let clocks = rcc
.cfgr
.use_hse(8.MHz())
.sysclk(72.MHz())
.hclk(72.MHz())
.pclk1(36.MHz())
.pclk2(72.MHz())
.adcclk(12.MHz())
.freeze(&mut flash.acr);
// LED is on pin C13, configure it for output
let mut gpioc = periphs.GPIOC.split();
let led_pin = gpioc.pc13;
let led = UserLed::new(led_pin, &mut gpioc.crh);
let mut gpiob = periphs.GPIOB.split();
// Rotary encoder uses TIM4 on B6 and B7, and B8 as the encoder button.
let enc_clk = gpiob.pb6;
let enc_dt = gpiob.pb7;
let enc_button = gpiob.pb8;
let mut afio = periphs.AFIO.constrain();
let encoder = Encoder::new(
periphs.TIM4,
enc_clk,
enc_dt,
enc_button,
&mut afio.mapr,
&clocks,
);
// Use TIM2 for the control polling task
let poll_timer = Timer::new(periphs.TIM2, &clocks).counter_hz();
// Use TIM3 for the LED blinker task
let blink_timer = Timer::new(periphs.TIM3, &clocks).counter_hz();
// I2C for display is on gpiob B10 and B11
let scl = gpiob.pb10.into_alternate_open_drain(&mut gpiob.crh);
let sda = gpiob.pb11.into_alternate_open_drain(&mut gpiob.crh);
// Configure the I2C peripheral itself
let i2c = BlockingI2c::i2c2(
periphs.I2C2,
(scl, sda),
Mode::Fast {
frequency: 400_000.Hz(),
duty_cycle: DutyCycle::Ratio2to1,
},
clocks,
1000,
10,
1000,
1000,
);
let display = Display::new(i2c);
Self {
encoder,
display,
led,
poll_timer,
blink_timer,
}
}
}
/// The user-controllable green LED
pub struct UserLed(Pin<Output<PushPull>, CRH, 'C', 13>);
impl UserLed {
/// Create the LED controller from the pin it is attached to
///
/// Requires both the pin and a mutable reference to its control register
pub fn new(pin: Pin<Input<Floating>, CRH, 'C', 13>, cr: &mut hal::gpio::Cr<CRH, 'C'>) -> Self {
let led = pin.into_push_pull_output(cr);
Self(led)
}
/// Toggle the state of the LED
///
/// The state is managed in the hardware; the HAL api this calls will read,
/// modify, and write the control register to change the state.
pub fn toggle(&mut self) {
self.0.toggle();
}
}
//
// Rotary Encoder
//
use switch_hal::{Switch, ActiveLow, InputSwitch, IntoSwitch};
type EncoderQei = Qei<
stm32::TIM4,
Tim4NoRemap,
(Pin<Input<Floating>, CRL, 'B', 6>,
Pin<Input<Floating>, CRL, 'B', 7>)
>;
/// A rotary encoder peripheral with a push-button shaft
///
/// This can return the current readings of the shaft count and buttons and
/// also statefully poll for rotation deltas and "button up" events.
///
/// Monitoring the position is handled by the TIM4 timer in quadrature encoder
/// mode, which provides clean and accurate positioning with no software
/// overhead.
pub struct Encoder {
qei: EncoderQei,
button: Switch<Pin<Input<Floating>, CRH, 'B', 8>, ActiveLow>,
last_count: u16,
last_active: bool,
}
impl Encoder {
/// Create a new encoder manager
///
/// You must supply the following:
/// + The timer control register
/// + 2 pins attached to the timer for monitoring rotation
/// + 1 gpio pin for monitoring the button (active low)
/// + Mutable reference to the `MAPR` register
/// + Shared reference to `Clocks`
pub fn new(
timer: stm32::TIM4,
clk_pin: Pin<Input<Floating>, CRL, 'B', 6>,
dt_pin: Pin<Input<Floating>, CRL, 'B', 7>,
button_pin: Pin<Input<Floating>, CRH, 'B', 8>,
mapr: &mut hal::afio::MAPR,
&clocks: &hal::rcc::Clocks,
) -> Self {
let qei = Timer::new(timer, &clocks)
.qei((clk_pin, dt_pin), mapr, QeiOptions::default());
let button = button_pin.into_active_low_switch();
Self {
qei,
button,
last_count: 0,
last_active: false,
}
}
/// Get the current count from the encoder
///
/// Each tick of the counter represents one of the tactile detents, which
/// occur once every 4 of the raw counts.
pub fn count(&self) -> u16 {
self.qei.count() / 4
}
/// Get the current depressed state of the shaft button of the encoder
///
/// This will be `true` while the shaft is being pressed down and `false`
/// when it is not being depressed.
pub fn is_pressed(&self) -> bool {
self.button.is_active().unwrap()
}
/// Statefully get the number of ticks the shaft has turned since last poll
///
/// Each poll stores the current position and returns the delta between the
/// current position and the last one.
pub fn poll_count_delta(&mut self) -> i32 {
let prev = self.last_count;
let current = self.count();
self.last_count = current;
i32::from(current) - i32::from(prev)
}
/// Statefully poll for "button up" events
///
/// Each poll stores the current button state and returns whether the
/// button returned to the inactive state from the active state since
/// the previous poll.
pub fn poll_button_up(&mut self) -> bool {
let prev = self.last_active;
let current = self.button.is_active().unwrap();
self.last_active = current;
!current && prev
}
}
//
// OLED Display
//
type DisplayI2c = BlockingI2c<
stm32::I2C2,
(Pin<Alternate<OpenDrain>, CRH, 'B', 10>,
Pin<Alternate<OpenDrain>, CRH, 'B', 11>)
>;
type DisplayController = Ssd1306<
I2CInterface<DisplayI2c>,
DisplaySize128x64,
BufferedGraphicsMode<DisplaySize128x64>
>;
/// An I2C-attached SSD1306 128x64 OLED display
///
/// This manages the I2C communication with the controller, providing `draw`
/// and `flush` methods for interacting with the `embedded-graphics` crate.
pub struct Display {
controller: DisplayController,
}
impl Display {
/// Create the OLED display manager
///
/// This requires a pre-configred `BlockingI2c` bus manager. It initializes
/// the controller upon construction but doesn't flush it.
///
/// The underlying `Ssd1306` controller is configured for buffered graphics
/// mode.
pub fn new(i2c: DisplayI2c) -> Self {
let interface = I2CDisplayInterface::new(i2c);
let mut controller = Ssd1306::new(interface, DisplaySize128x64, DisplayRotation::Rotate0)
.into_buffered_graphics_mode();
controller.init().unwrap();
Self {
controller,
}
}
/// Flush the buffered graphics operations to the display
pub fn flush(&mut self) {
self.controller.flush().ok();
}
/// Draw the current state of the UI model to the display
///
/// This includes a flush operation.
pub fn draw(&mut self, model: &mut ui::HelloDisplay<128,64>) {
model.draw(&mut self.controller).ok();
self.controller.flush().ok();
}
}
// Implement Deref and DerefMut so we can treat Display as a DisplayController
use core::ops::{Deref, DerefMut};
impl Deref for Display {
type Target = DisplayController;
fn deref(&self) -> &Self::Target {
&self.controller
}
}
impl DerefMut for Display {
fn deref_mut(&mut self) -> &mut Self::Target {
&mut self.controller
}
}